【模糊逻辑】模糊集合和模糊逻辑-3

2.16 从精确逻辑到模糊逻辑

相较于精确逻辑,模糊逻辑往往无法直接给出正确或者错误,或者真或假。这种逻辑关系往往是处理无法明确说明对错(正确与否)的情况。在模糊逻辑中,命题表征的是其正确/错误程度,从0到1之间来连续表示,而非二值化。

例如先前提到过的模糊集可以从精确集扩展模糊关系可以从精确关系扩展那样,模糊逻辑也可以由精确逻辑扩展得到。所以这里的一些符号也就借鉴着精确逻辑中来使用。

以下定义implication关系在模糊逻辑中的使用。类似精确逻辑,可以用"IF-THEN"表述方式,“如果x为A,则y为B”,其中 x ∈ X x\in X xX, y ∈ Y y\in Y yY,有隶属函数MF μ A → B ( x , y ) \mu_{A\rightarrow B}(x,y) μAB(x,y),其中 μ A → B ( x , y ) ∈ [ 0 , 1 ] \mu_{A\rightarrow B}(x,y)\in[0,1] μAB(x,y)[0,1]。值得注意的是,这里的 μ A → B ( x , y ) \mu_{A\rightarrow B}(x,y) μAB(x,y)是对x和y之间的存在隐含关系的程度的度量函数。可以举例如下
在这里插入图片描述
在模糊逻辑中,modus ponens(演绎推理)可以扩展为generalized modus ponens(广义演绎推理)
在这里插入图片描述
这里值得注意的是,modus ponens 和广义modus ponens存在细微的区别——其中集合 A ∗ A^* A不一定与集合A相同,同样的结果中的集合 B ∗ B^* B不一定与集合B相同。

例子2.30

现在举个男生打篮球的例子,设置命题“如果一个男生身高很矮,则他将不是一个非常专业的篮球运动员”,这里的Implication中A的集合是男生身高很矮,此时premise的 A ∗ A^* A可以为男生身高不足1.6米。这里很明显,集合 A ∗ A^* A和集合A不同,但是集合 A ∗ A^* A和A很相近。同理集合 B ∗ B^* B和B也可以是不同的。

所以,对于精确逻辑来说,往往Premise中的集合和Implication中的前提是一样的,而Implication的结果则是命题的结果。而对于模糊逻辑来说,只要这两个集合存在非零的相似程度,那么就可以来构成命题。

假设 μ A ∗ ( x ) \mu_{A^*}(x) μA(x)为单元素模糊器(singleton fuzzifier),可以表示如下
μ A ∗ = { 1 , x = x ′ 0 , x ≠ x ′ \mu_{A^*}= \left\{ \begin{array}{lr} 1 ,x=x^{'} & \\ 0 ,x\ne x^{'} & \end{array} \right. μA={1,x=x0,x=x
根据之前不同积空间的组合的公式,可以将implication的结果 B ∗ B^* B表示如下
μ B ∗ ( y ) = s u p x ∈ X [ μ A ∗ ( x ) ★ μ A → B ( x , y ) ] , x ∈ X , y ∈ Y \mu_{B^*}(y)=sup_{x\in X}[\mu_{A^*}(x)\bigstar\mu_{A\rightarrow B}(x,y)],x\in X ,y\in Y μB(y)=supxX[μA(x)μAB(x,y)],xX,yY
由于假设 μ A ∗ ( x ) \mu_{A^*}(x) μA(x)为单元素模糊器,所以有下式
μ B ∗ ( y ) = s u p x ∈ X [ μ A ∗ ( x ) ★ μ A → B ( x , y ) ] = s u p [ μ A → B ( x ′ , y ) , 0 ] = μ A → B ( x ′ , y ) , y ∈ Y \mu_{B^*}(y)=sup_{x\in X}[\mu_{A^*}(x)\bigstar\mu_{A\rightarrow B}(x,y)] =sup[\mu_{A\rightarrow B}(x^{'},y),0]= \mu_{A\rightarrow B}(x^{'},y),y\in Y μB(y)=supxX[μA(x)μAB(x,y)]=sup[μAB(x,y),0]=μAB(x,y),yY
此处的符号 ★ \bigstar 可以为最小或者乘积。由上式可知,对于单元素模糊器的最大化运算符是非常容易来估计的,因为 μ A ∗ ( x ) \mu_{A^*}(x) μA(x)只有一个非零点。

例子2.31

根据先前的例子,我们知道有,以下等式
μ B ∗ ( y ) = μ A → B ( x ′ , y ) = 1 − m i n [ μ A ( x ′ ) , 1 − μ B ( y ) ] , y ∈ Y \mu_{B^*}(y)=\mu_{A\rightarrow B}(x^{'},y)=1-min[\mu_A(x^{'}),1-\mu_B(y)],y\in Y μB(y)=μAB(x,y)=1min[μA(x),1μB(y)],yY
此处,假设 μ B ∗ ( y ) \mu_{B^*}(y) μB(y)为三角MF,不难发现这样的结果输出有一个恒定偏置的。
在这里插入图片描述

例子2.32

类似的如果有以下等式
μ B ∗ ( y ) = μ A → B L ( x ′ , y ) = m i n [ 1 , 1 − μ A ( x ′ ) + μ B ( y ) ] , y ∈ Y \mu_{B^*}(y)=\mu^L_{A\rightarrow B}(x^{'},y)=min[1,1-\mu_A(x^{'})+\mu_B(y)],y\in Y μB(y)=μABL(x,y)=min[1,1μA(x)+μB(y)],yY
此处,假设 μ B ∗ ( y ) \mu_{B^*}(y) μB(y)为三角MF,不难发现这样的结果输出依然有一个恒定偏置的。
在这里插入图片描述

2.17Mamdani提出的Implication

Mamdani提出的Implication
μ A → B ( x ′ , y ) ≡ m i n [ μ A ( x ) , μ B ( x ) ] , x ∈ X , y ∈ Y \mu_{A\rightarrow B}(x^{'},y)\equiv min[\mu_A(x),\mu_B(x)],x\in X,y\in Y μAB(x,y)min[μA(x),μB(x)],xX,yY
之后,Larsen也提出的Implication
μ A → B ( x ′ , y ) ≡ μ A ( x ) μ B ( x ) , x ∈ X , y ∈ Y \mu_{A\rightarrow B}(x^{'},y)\equiv \mu_A(x)\mu_B(x),x\in X,y\in Y μAB(x,y)μA(x)μB(x),xX,yY
根据上面的Implication可以有以下的输出,则不存在了偏置了。
在这里插入图片描述

  • 8
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值