原文出处为:http://www.math.com/tables/trig/identities.htm
sin(theta) = a / c | csc(theta) = 1 / sin(theta) = c / a |
cos(theta) = b / c | sec(theta) = 1 / cos(theta) = c / b |
tan(theta) = sin(theta) / cos(theta) = a / b | cot(theta) = 1/ tan(theta) = b / a |
sin(-x) = -sin(x)
csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)
sin^2(x) + cos^2(x) = 1 | tan^2(x) + 1 = sec^2(x) | cot^2(x) + 1 = csc^2(x) | |
sin(x y) = sin x cos ycos x sin y | |||
cos(x y) = cos x cosysin x sin y |
tan(x y) = (tan xtan y) / (1 tan x tan y)
sin(2x) = 2 sin x cos x
cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x)
tan(2x) = 2 tan(x) / (1 - tan^2(x))
sin^2(x) = 1/2 - 1/2 cos(2x)
cos^2(x) = 1/2 + 1/2 cos(2x)
sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 )
cos x - cos y = -2 sin( (x - y)/2 ) sin( (x + y)/2 )
已知三角形abc, 三个角为A,B,C,三条边为a,b,c; 边a对应角A, 边b对应角B, 边c对应角C:
(正弦定理)
a/sin(A) = b/sin(B) = c/sin(C)
余弦定理)
|
(正切定理)
(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/2]