深度学习,误检率,漏检率计算

假设:
一组样本,个数为,正例有P个,负例有N个,

算法结果:
判断为正例的正例有TP个,判断为负例的正例有FN个(假的负例)P=TP+FN
判断为负例的负例为TN个,判断为正例的负例有FP个(假的正例)N=TN+FP

指标计算:
精确度(Precision)P=所有判断为正例的例子中,真正为正例的所占的比例=TP/(TP+FP)
准确率(Accuracy)A=判断正确的例子的比例=(TP+TN)/(P+N)
召回率(Recall)R=所有正例中,被判断为正例的比例=TP/P
漏警概率=1-Recall,正例判断错误的概率,漏掉的正例所占比率
虚警率=1-Precision,错误判断为正例的概率,虚假正例所占的比率

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
vidi深度学习外观检测技术是一种应用了深度学习算法的外观检测解决方案,可以用于检测和识别各种物体、人脸、文字等。虽然vidi深度学习外观检测技术在实践中表现出色,但仍存在一些缺点需要注意。 首先,vidi深度学习外观检测技术对硬件设备要求较高。由于深度学习模型具有复杂的网络结构和大量的参数,运行这些模型需要强大的计算和存储能力,因此在低配置的硬件设备上可能无法正常运行。 其次,vidi深度学习外观检测技术对数据集要求较高。深度学习模型的训练依赖于大量的标注数据,而且需要足够的多样性和代表性。如果提供给模型的数据集非常有限或者不具备代表性,可能导致模型的泛化能力较差,无法准确地进行外观检测。 另外,vidi深度学习外观检测技术在处理复杂场景时可能存在误检和漏检的问题。由于外观检测涉及到多种物体、人脸或文字,而且场景中可能存在遮挡、光照变化等干扰因素,深度学习模型可能会出现误判的情况。同时,对于一些特殊形态或低对比度的物体,模型可能会漏检或者无法识别。 最后,vidi深度学习外观检测技术在保护用户隐私方面也存在一些问题。由于深度学习模型需要对输入的数据进行处理和分析,可能会涉及到用户隐私信息的泄露。因此,在将该技术应用于实际场景中时,需要谨慎考虑隐私保护的问题。 综上所述,vidi深度学习外观检测技术虽然应用广泛且有很高的准确,但仍然存在硬件要求高、数据集要求高、误检漏检问题以及隐私保护等方面的缺点。在实际应用时,需要根据具体情况进行权衡和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值