【详解】Transfer learning迁移学习 附代码

本文探讨了在数据集规模不同情况下,如何运用迁移学习的有效策略:从冷冻卷积层到微调全网络,以及针对小、中、大数据集的不同调整方法。重点介绍了两种常见操作:只调整一层和调整整个classifier层的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迁移学习的训练策略:
1、先冻结卷积层只训练全链接层,这一步需要把结果最好的那个模型保存起来。
2、加载上一步保存的那个最优模型,在这个模型的基础上,再以更小的学习率训练所有层,更新网络的所有权重参数,微调,并且学习率衰减,以达到更好的效果。

  • 当自己的数据集少的时候,可以除了最后几层用作初始化,前面层的权值进行微调,一般不进行大的更改,冻住参数;
  • 当自己的数据集中的时候,只冻住前面 1/2 层的参数,后面的只做初始化;
  • 当自己的数据集比较大的时候,可以只使用Source 模型的参数当做初始化;

在这里插入图片描述


1、只调整一层:以后禁止使用这种写法

model    = torchvision.models.vgg16(pretrained=False)
vgg16pth = 'model_weight/vgg16.pth'
model.load_state_dict(torch.load(vgg16pth))

# 冻结卷积层的参数
for params in model.features.parameters():
    params.requires_grad = False

# 微调 model.classifier部分
model.classifier[-1].out_features = 5
model = model.to(device)

2、调整整个classifier层:要调整把整个分类层都要调整一下

# 微调 model.classifier部分
fc_inputs_num 	 = model.classifier[0].in_features

model.classifier = nn.Sequential( 	nn.Linear(fc_inputs_num, 1024),
								    nn.ReLU(inplace=True),
								    nn.Dropout(p=0.5),
								    nn.Linear(1024, 5)		)
model = model.to(device)

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值