Andrew Ng - SVM【1】最优间隔分类器

本文深入探讨Andrew Ng关于SVM的理论,重点在于最优间隔分类器的概念。从间隔的直观理解出发,分析预测的“信心”,并介绍了函数间隔和几何间隔的定义。最终目标是寻找最大化间隔的分类器,以实现更准确和自信的分类预测。
摘要由CSDN通过智能技术生成

Andrew Ng - SVM【1】最优间隔分类器


Ng说,SVM是最好的监督学习算法(因为你用不用,它就那里,现成的)。为了了解SVM,我们首先应该絮叨絮叨怎样用一个较大的间隔将数据划开成类;接着好戏上演,我会讲到最优间隔分类器;然后我会讲一些核函数(Kernel)的知识,这个尤其重要,因为核函数是打通低维和高维通道的关键手段;最后,我将会讲解用SMO算法怎么实现SVM,顺利收关。


从间隔(margins)讲起


1. 对间隔的一个直观的认识

在logistic回归中,对于预测以 θ 为参在 x (特征向量, ? )条件下 y 为1的概率< p(y=1|x;θ) >,我们会使用模型 hθ(x)=g(θTx) 作为假设。所以当 hθ0.5 或者当且仅当 θTx0 时我们会认为预测结果为1 () 。那么我们来考虑一下这个问题,显然 θTx 越大 hθ(x)=p(y=1|x;θ) 就会越大,因此当我们在这种情况下,将结果预测为1就会非常“自信”。所以直观的理解,当 θTx0 时,我们会很确定预测的结果为1,而当 θTx0 的时候则会很肯定y=0。现给定一个训练集,同样,对于训练数据,假设我们可以找到相应的 θ 使得不论何时,只要 y=1 就有 θTx(i)0 ,只要 y=0 就有 θTx(i)0 ,那么根据这样的 θ 对相应的新数据做预测就非常简单了。不过理想很丰满,现实很骨感,要找到这样的 θ 还真不容易。不过有个概念叫函数间隔,可能会给这个理论一个相对好一点的支撑。

2. 对于预测的“信心”做一个分析

看下图,X代表正的训练样例,O代表负的训练样例,我们用一条线(由 θTx=0 确定的分割超平面)将正负样本分开,对A、B、C三点我们来做个分析。


初次遇见,分割超平面

对于A点,我们会很确定y=1;而相反,对于C点来说,或许根据当前的SH我能说y=1,可是机器学习这种事情,不确定性的东西本来就多,如果SH稍微动一动,可能C的分类就不好说了。因此,当点距离我的分割超平面足够远的时候,我们对数据的预测会很简单。那么,能不能在不同类别之间,真的存在那么一个边界,使我们很自信准确(意思就是离边界足够远)的预测出数据所属类别?几何间隔(geometric margin)粗现。

3. 一些符号的说明

为了更好的讲解SVM,我们将使用 y{ 1,1}() 来表示分类标签;分类器将以 w,b<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值