首先介绍,什么是recourse。
追索权,是指持票人在汇票到期未获付款,到期前未获承兑或其他法定原因发生时,向其前手请求偿还票据金额以及相关损失的票据权利,是法律上为补充付款请求权而设定的第二次请求权。
在票据流通过程中,持有到期票据者,在向应付款者索要票款、兑现票据时,如果付款人拒绝付款,即可向付款人所在地的法院(或其他法定出证人)申请出具付款人拒绝付款的证书,然后凭证书向票据背书人索要票款,金额为票据金额加利息加作拒绝证书费用。被追索人付清款项后可以向他的前手再追索,直至追索到出票人。票据背书人如要避免承担这种责任,可在背书时注明不受追索。在性质上属于债权请求权。
在具有recourse的随机规划方法中,使用最广泛的是两阶段随机规划,其中决策被分为“here-and-now” 决策和“wait-and-see” 决策。
随机规划方法关键思想是用概率分布对不确定参数中的随机性进行建模。 通常,随机规划方法可有效适应不同时间阶段的决策过程。
参考链接:https://zhuanlan.zhihu.com/p/211469934
两阶段随机规划问题的一般数学公式,参考J. R. Birge and F. Louveaux, Introduction to stochastic programming: Springer Science & Business Media, 2011.,第一阶段为线性,限制严格,
Recourse函数Q(x,ω)定义为
其中x表示在不确定性ω实现前“here-and-now” 做出的第一阶段决策,而第二阶段决策y在观察到不确定性实现后以“wait-and-see” 的方式被推迟。 两阶段随机规划模型的目标包括两部分:第一阶段目标c^Tx和第二阶段目标b(ω)^T y(ω)的期望。
随着场景数量增加,计算时间增加,两阶段随机规划问题在计算上比较昂贵。 为此,研究者已经开发了包括Benders分解、L-shaped方法和Lagrangean分解在内的基于分解的算法。 二进制决策变量的位置对于计算算法的设计至关重要。 对于具有整数recourse的随机规划,recourse函数的期望不再凸,甚至不连续,这阻碍了常规L-shaped方法的使用。 结果,研究者发明了拉格朗日松弛、分支定界法和改进的L- shaped方法来有效求解两阶段随机混合整数规划。