一、项目背景
在深度学习和计算机视觉快速发展的今天,高质量的标注数据集对于训练准确的目标检测、图像识别或 OCR(文字识别)模型至关重要。为此,我们整理并精心标注了一批书架上书籍的图像数据集,希望能帮助研究者、开发者或相关领域从业者加速项目进程、提升算法性能。
本次数据集包含 820 张 经过 Labelme 手工标注(并辅以 AI 辅助)的书籍图像,能够为您的书籍检测、书脊文字识别或其他相关项目提供有力的数据支持。
二、数据集介绍
-
数据来源
- 数据主要来源于不同环境下拍摄的书架照片,包含多种角度、光照和背景的书架场景。
- 图像中涵盖了中文书籍封面或书脊。
-
数据标注工具
- 使用 Labelme 进行标注,每一本书都被单独圈出,标注标签统一为
book
。 - 标注文件以
.json
格式提供,方便后续直接使用或转换成COCO等常见格式。
- 使用 Labelme 进行标注,每一本书都被单独圈出,标注标签统一为
-
标注质量
- 数据主要由人工仔细标注,并辅以AI辅助校验,保证标注的准确性和一致性。
- 标注过程中尽量覆盖每一本书的边缘范围,使后续模型训练更有效。
-
数据量与规模
- 总计 820张 图片和 820个JSON文件,每张图片均含有10—30本书的标注区域。
- 数据规模适中,既能满足学术研究需求,也能为实际项目开发提供数据支持。
三、应用场景
-
书籍检测
利用本数据集可以快速训练出一个能识别书籍位置的目标检测模型,自动统计或整理书籍摆放情况。 -
OCR文字识别
检测出书本区域后,再结合文字识别模型对书籍封面或书脊文字进行识别,实现自动分类或检索。 -
机器人/无人零售
部署在机器人视觉系统或智能书店中,用于监测货架书籍数量、识别上架书籍信息等。 -
AR/VR应用
在AR/VR场景中,实时识别书籍并进行虚拟交互,比如自动弹出书籍信息等。 -
学术研究
计算机视觉、图像分割、多目标检测等方向的研究与算法验证。
四、数据样例
- 以下示例仅展示一部分数据截图,实际数据集将包含更丰富的拍摄角度与书籍类型。
- 每张图片都对应一个
.json
标注文件,可在 Labelme 工具中查看详细标注信息。
五、数据格式说明
- 图像文件:以常见的
.jpg
或.png
格式保存; - 标注文件:每张图像对应一个同名
.json
文件,内含多个多边形/矩形标注,标签统一为book
; - 文件组织:
dataset/ ├── 000001.jpg ├── 000001.json ├── 000002.jpg ├── 000002.json └── ...
六、如何使用本数据集
-
安装Labelme
- 推荐使用 Python 环境下的 pip 方式:
pip install labelme
- 安装完成后,您可以在命令行输入
labelme
来启动可视化标注工具。
- 推荐使用 Python 环境下的 pip 方式:
-
查看标注
- 在 Labelme 中打开任意一张图片对应的
.json
文件,即可查看本次标注的细节、坐标点、标签名称等。
- 在 Labelme 中打开任意一张图片对应的
-
转换为COCO或VOC格式(可选)
- 可使用官方或第三方脚本将 Labelme 标注文件转换为其他常见数据格式,以方便与现有项目或代码对接。
- 例如,使用官方示例脚本:
labelme_json_to_dataset 000001.json
-
训练模型
- 利用如 YOLO、Faster R-CNN、SSD 等主流目标检测框架,直接使用该数据集进行训练。
- 训练前可视化检查并做数据增强(如翻转、裁剪、旋转、亮度调整等),提升模型的鲁棒性。
七、获取方式
如果您对该数据集感兴趣,或想进一步了解更多信息,可以私聊或留言(请备注“数据集”)进行沟通。
- 交流内容可包括:数据使用场景、标注格式转换、模型训练经验分享等。
- 如有其他定制化需求,也可在沟通时进行讨论。
八、总结
820 张书架书籍图像标注数据集 经过人工与 AI 的双重验证,标注精确且内容多样,适用于书籍检测、文字识别、目标检测等多种计算机视觉任务。我们期待这一数据集能为您的研究或项目提供助力,也欢迎在使用过程中分享宝贵的反馈和改进建议。
如果您对本数据集或相关技术感兴趣,欢迎进一步交流。祝大家在计算机视觉领域取得更多突破和进展!
声明:本文旨在分享一个高质量的标注数据集,供研究者和开发者使用。文中展示的图片或标注示例仅供参考,具体内容以实际提供为准。
本文所含信息仅代表个人观点,敬请读者根据自身需求和环境选择性参考。
如果觉得这篇文章对您有所帮助,欢迎点赞、收藏或关注我的 CSDN 博客!
更多技术交流或数据集信息,可以私聊或留言(备注“数据集”)。让我们共同进步,一起在计算机视觉领域创造更多可能。