书架书籍图像标注数据

一、项目背景

       在深度学习和计算机视觉快速发展的今天,高质量的标注数据集对于训练准确的目标检测、图像识别或 OCR(文字识别)模型至关重要。为此,我们整理并精心标注了一批书架上书籍的图像数据集,希望能帮助研究者、开发者或相关领域从业者加速项目进程、提升算法性能。

        本次数据集包含 820 张 经过 Labelme 手工标注(并辅以 AI 辅助)的书籍图像,能够为您的书籍检测、书脊文字识别或其他相关项目提供有力的数据支持。

二、数据集介绍

  1. 数据来源

    • 数据主要来源于不同环境下拍摄的书架照片,包含多种角度、光照和背景的书架场景。
    • 图像中涵盖了中文书籍封面或书脊。
  2. 数据标注工具

    • 使用 Labelme 进行标注,每一本书都被单独圈出,标注标签统一为 book
    • 标注文件以 .json 格式提供,方便后续直接使用或转换成COCO等常见格式。
  3. 标注质量

    • 数据主要由人工仔细标注,并辅以AI辅助校验,保证标注的准确性和一致性。
    • 标注过程中尽量覆盖每一本书的边缘范围,使后续模型训练更有效。
  4. 数据量与规模

    • 总计 820张 图片和 820个JSON文件,每张图片均含有10—30本书的标注区域。
    • 数据规模适中,既能满足学术研究需求,也能为实际项目开发提供数据支持。

三、应用场景

  1. 书籍检测

            利用本数据集可以快速训练出一个能识别书籍位置的目标检测模型,自动统计或整理书籍摆放情况。
  2. OCR文字识别

            检测出书本区域后,再结合文字识别模型对书籍封面或书脊文字进行识别,实现自动分类或检索。
  3. 机器人/无人零售

     部署在机器人视觉系统或智能书店中,用于监测货架书籍数量、识别上架书籍信息等。
  4. AR/VR应用

      在AR/VR场景中,实时识别书籍并进行虚拟交互,比如自动弹出书籍信息等。
  5. 学术研究

       计算机视觉、图像分割、多目标检测等方向的研究与算法验证。

四、数据样例

  • 以下示例仅展示一部分数据截图,实际数据集将包含更丰富的拍摄角度与书籍类型。
  • 每张图片都对应一个 .json 标注文件,可在 Labelme 工具中查看详细标注信息。

五、数据格式说明

  • 图像文件:以常见的 .jpg.png 格式保存;
  • 标注文件:每张图像对应一个同名 .json 文件,内含多个多边形/矩形标注,标签统一为 book
  • 文件组织
    dataset/
    ├── 000001.jpg
    ├── 000001.json
    ├── 000002.jpg
    ├── 000002.json
    └── ...
    

六、如何使用本数据集

  1. 安装Labelme

    • 推荐使用 Python 环境下的 pip 方式:
      pip install labelme
      
    • 安装完成后,您可以在命令行输入 labelme 来启动可视化标注工具。
  2. 查看标注

    • 在 Labelme 中打开任意一张图片对应的 .json 文件,即可查看本次标注的细节、坐标点、标签名称等。
  3. 转换为COCO或VOC格式(可选)

    • 可使用官方或第三方脚本将 Labelme 标注文件转换为其他常见数据格式,以方便与现有项目或代码对接。
    • 例如,使用官方示例脚本:
      labelme_json_to_dataset 000001.json
      
  4. 训练模型

    • 利用如 YOLO、Faster R-CNN、SSD 等主流目标检测框架,直接使用该数据集进行训练。
    • 训练前可视化检查并做数据增强(如翻转、裁剪、旋转、亮度调整等),提升模型的鲁棒性。

七、获取方式

        如果您对该数据集感兴趣,或想进一步了解更多信息,可以私聊或留言(请备注“数据集”)进行沟通。

  • 交流内容可包括:数据使用场景、标注格式转换、模型训练经验分享等。
  • 如有其他定制化需求,也可在沟通时进行讨论。

八、总结

820 张书架书籍图像标注数据集 经过人工与 AI 的双重验证,标注精确且内容多样,适用于书籍检测、文字识别、目标检测等多种计算机视觉任务。我们期待这一数据集能为您的研究或项目提供助力,也欢迎在使用过程中分享宝贵的反馈和改进建议。

如果您对本数据集或相关技术感兴趣,欢迎进一步交流。祝大家在计算机视觉领域取得更多突破和进展!


声明:本文旨在分享一个高质量的标注数据集,供研究者和开发者使用。文中展示的图片或标注示例仅供参考,具体内容以实际提供为准。
本文所含信息仅代表个人观点,敬请读者根据自身需求和环境选择性参考。


如果觉得这篇文章对您有所帮助,欢迎点赞、收藏或关注我的 CSDN 博客!
更多技术交流或数据集信息,可以私聊或留言(备注“数据集”)。让我们共同进步,一起在计算机视觉领域创造更多可能。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想当码农~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值