4、不仅仅应用于标定的非线性优化问题

一、非线性优化算法通用流程

非线性优化的基本流程可以总结如下(最小化问题):
在这里插入图片描述
可以看到,我们主要的工作就是寻找那个 Δ x i \Delta x_i Δxi,而不同的寻找方法和更新流程,就对应不同的优化方法。

二、不同的优化方法

在这里插入图片描述

1.梯度下降法

上图表示我们目标函数的二维表现形式。我们通过非线性优化的方法找到函数的最小值对应的 x 1 x_1 x1 x 2 x_2 x2
在这里插入图片描述
其中 g ( x ) g(x) g(x) F ( x ) F(x) F(x)的一阶导。 α \alpha α为我们设定的步长。为了达到使得目标函数值随自变量变化而减少的要求,得出下降方向 h h h
也就是说,我们在 x x x点给定一个步长 α \alpha α和一个与一阶导方向夹角大于90°的一个方向 h h h,则可以保证目标函数值是向减少的方向更新自变量参数的。

2.最速下降法

最速下降法也很简单,顾名思义就是找到使得目标函数变化率最大的那个方向即可。
在这里插入图片描述
即,当函数梯度和下降方向夹角为 π \pi π时,迭代更新最快可以达到最小值。
在这里插入图片描述
他是有明显缺点的。由于这里面我们要给定他一个非负步长 α \alpha α,从上图来看,步长给大了,对后面迭代过程是不友好的,很容易陷入反复,陷入一个死循环。步长给小了效率太低,所以这个 α \alpha α很难去合理确定。

3.牛顿法

牛顿法是对最速下降法的一个改进。
在这里插入图片描述
我们通过上面的方法就能直接解出 h h h,但这也是有条件的,那就是 H H H必须正定,但在实际的工程问题中这很难一直保证。
一般情况下,牛顿法中 α = 1 \alpha=1 α=1

牛顿法之所以比最速下降法要好就是因为,牛顿法用了泰勒公式进行了二阶近似。求解出来的 h h h受二阶导的影响,接近最小值附近时,$h
$会变得更小来适应最后阶段的迭代

缺点也很明显,他要计算二阶海森矩阵,这是非常复杂的,加大了计算量。

4.高斯-牛顿法

高斯牛顿法又是对牛顿法的改进。
在这里插入图片描述
与牛顿法对比,发现高斯牛顿法不是对目标函数进行展开,而是对里面的误差函数 f ( x ) f(x) f(x)进行一阶泰勒展开。代入目标函数,发现得到 J T J h = − J T f ( x ) J^TJh = -J^Tf(x) JTJh=JTf(x),与牛顿法的正规方程形式一致,相当于高斯牛顿法用 J T J J^TJ JTJ近似了牛顿法中很难计算的 H H H。这大大降低了牛顿法的计算量


缺点就是,实际工程中我们仍不能一直保证 J T J J^TJ JTJ是正定的。而且步长取得不能太大,因为一阶泰勒近似在 x x x附近才能有很好的近似。

5.LM法

LM法正是解决了上面高斯牛顿法无法保证“海森矩阵”为正定以及步长不能太大的缺点。
在这里插入图片描述
在这里插入图片描述
可见,LM法既避免了计算复杂的海森矩阵,又保证了信息矩阵的正定性,同时还合理的选择了更新步长。无疑,是这几个优化方法中最好的优化算法。

4、非常感谢您的阅读。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宛如新生

转发即鼓励,打赏价更高!哈哈。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值