视觉SLAM中,本质矩阵、基础矩阵、单应性矩阵自由度和秩分析。


先贴上一个链接,他总结了视觉SLAM中各个矩阵的自由度、秩及其计算等内容,非常全。

1 矩阵的秩和自由度

矩阵的秩

经过初等变换之后的非零行(列)的个数,若不存在零行(列),则为满秩矩阵(Rank(A)=n。特别规定零矩阵的秩为零

矩阵的自由度

有几种不同的方法来考虑矩阵的自由度。
(1) 考虑一个Am×n矩阵。此矩阵有mn个元素。我们可以改变这个矩阵中的Amn值,使A矩阵唯一,因此它有mn个自由度。
(2) 若我们有一个上三角的m×m矩阵,并且知道矩阵中有几个值是0,那么非零项的个数就是矩阵的自由度。
(3) 对于任何矩阵,当(1,1)元素非零时,我们可以将矩阵的所有元素除以第一个元素,使其为1。因此,如果我们有两个矩阵A和B=2A,当我们缩放这些矩阵,使其第一个元素为1时,它们就是等价的。因此,我们消除了一个的自由度。也就是说,当我们确定此矩阵具有尺度等价性后,就可以人为把(1,1)元素置为1.

什么是自由度?就是有几个量是可以改变的 或者说是未知的。

矩阵的自由度反应了矩阵中每个元素的约束的状态

2 矩阵重要性质

  1. 正交矩阵相乘仍然是正交矩阵
  2. 可逆矩阵和满秩是充分必要条件;
    一个矩阵乘以可逆矩阵秩不变
  3. 初等变换不改变矩阵的秩
  4. 矩阵的秩等于非零奇异值的个数,等于非零特征值的个数
  5. 任意矩阵都能进行奇异值分解,只有方阵才可以进行特征值分解

3 各个矩阵的自由度

由于基础矩阵和本质矩阵都是由对极约束来的,所以先把这个公式列在这:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意上面的x为归一化相机坐标系的点坐标,p是像素坐标系的点坐标。

3.1 本质矩阵E的自由度为5,秩为2。

自由度
首先,旋转和平移一共6个自由度。
其次,由于对极约束的原因,本质矩阵是具有尺度等价性的,所以自由度减1。
所以,本质矩阵的自由度为5。

PS:旋转矩阵虽然9个参数,但不是任意数都可以,得满足矩阵为单位(去掉3个自由度)正交(去掉2个自由度)阵,行列式为正1(去掉1个自由度)的性质,所以,这些约束导致自由度减少,虽然是9个数但是表达3个自由度。


**首先,旋转矩阵秩为3,是可逆矩阵。
其次,平移的反对称矩阵秩为2。证明如下:在这里插入图片描述
最后,E = t^R ,根据性质2可得,本质矩阵的秩与平移反对称矩阵的秩相同。

3.2 基础矩阵F的自由度为7,秩为2。

自由度
首先,基础矩阵也是一个3x3的矩阵。
其次,其仍然受对极约束的影响,具有尺度等价性。
再其次,基础矩阵的行列式为0。(因为他的秩为2,见下面。)
最后得到,基础矩阵的自由度为7.


首先,相机内参矩阵秩为3,旋转矩阵秩为3。
其次,平移反对称矩阵秩为2。
最后,同样由性质2得出,基础矩阵的秩为2。

3.3 单应性矩阵H的自由度为8,秩为3。

参考神奇的单应性矩阵

自由度
首先,单应性矩阵也是一个3x3的矩阵。
其次,其具有尺度等价性。
最后得到,基础矩阵的自由度为8。


因为单应性矩阵是可逆矩阵,所以他的秩为3。

### 回答1: Stewart平台是一种并联机构,具有六个自由度,其三个为平移自由度,三个为旋转自由度。平移自由度包括x、y、z三个方向上的平移,旋转自由度包括绕x、y、z轴的旋转。 在Stewart平台,底座与顶部都是由六个支撑杆连接而成,每个支撑杆都有两个球节,一个连接底座,一个连接顶部。通过底座和顶部之间的运动,可以实现各种六自由度的运动。通过拉伸或压缩各个支撑杆的长度,可以实现平移自由度的运动;通过旋转各个支撑杆,可以实现旋转自由度的运动。 Stewart平台自由度计算的方法有多种,其一种常用的方法是基于雅各比矩阵的计算方法。雅各比矩阵是底座和顶部之间的运动学关系的矩阵表示,通过计算雅各比矩阵,可以确定Stewart平台的自由度。通过可逆的雅各比矩阵变换,可以将底座坐标系的坐标值转换为顶部坐标系的坐标值,从而实现对Stewart平台姿态的控制。 总之,Stewart平台具有六自由度,其三个为平移自由度,三个为旋转自由度。通过雅各比矩阵的计算方法可以确定Stewart平台的自由度,并实现对平移和旋转自由度的精确控制。 ### 回答2: Stewart平台是一种由六个液压缸组成的平行机构,可以在任意方向上执行运动,因此具有六自由度。Stewart平台还可以支持与其连接的负载的旋转和倾斜,因此被广泛应用在航空航天、汽车工业等领域。 对于Stewart平台,其自由度可以通过以下的计算得到。首先对于每个液压缸,设其作用于平台上的作用点位置为$P_i$,作用点在液压缸杆上的投影点为$Q_i$,液压缸的伸缩长度为$l_i$,液压缸自身的长度为$l'_i$,则有: $$ l_i + l'_i = \left\|P_i - Q_i\right\| $$ 这个式子表达了液压缸长度和伸缩长度的关系。现在考虑平台的位姿,设平台心的位置为$O$,平台与地面平行且平面内与$x$轴的夹角为$\alpha$,如下图所示。 ![image.png](https://cdn.luogu.com.cn/upload/image_hosting/vye6n7ab.png) 为了方便计算,我们定义以下向量: $$ \vec{p_i} = OP_i $$ $$ \vec{q_i} = OQ_i $$ 则有: $$ \vec{p_i} = \vec{q_i} + \lambda_i \vec{n_i} $$ 其$\vec{n_i}$表示液压缸的固定方向(由液压缸的安装位置决定),$\lambda_i$为液压缸的伸缩长度,可以通过$l_i$和$l'_i$计算得到。 现在我们需要求解平台的位姿,即要求出$O$的位置和平面的旋转角$\alpha$。对于一个特定的要求,可以设平面内的三个控制点为$A_1, A_2, A_3$,它们在平面内的位置已知,并且对于每个液压缸,我们可以计算出其作用在平台控制点上的力$F_i$。因此,可以列出以下方程组: $$ \vec{p_1} - \vec{q_1} = \lambda_1 \vec{n_1} $$ $$ \vec{p_2} - \vec{q_2} = \lambda_2 \vec{n_2} $$ $$ \vec{p_3} - \vec{q_3} = \lambda_3 \vec{n_3} $$ $$ \vec{p_4} - \vec{q_4} = \lambda_4 \vec{n_4} $$ $$ \vec{p_5} - \vec{q_5} = \lambda_5 \vec{n_5} $$ $$ \vec{p_6} - \vec{q_6} = \lambda_6 \vec{n_6} $$ 这些方程的含义是,每个控制点与平台固定点之间的距离等于液压缸的伸缩长度。因此,方程的未知量是液压缸的伸缩长度$\lambda_i$和平台的位姿。对于任意一个控制点$A_i$,都有: $$ F_{A_i} = \sum_{j=1}^6 F_{i,j} $$ 其$F_{i,j}$表示第$j$个液压缸对控制点$A_i$的作用力,在计算这个力之前需要对液压缸的长度进行重新调节,使得液压缸的伸缩长度满足上述的方程组。这样就得到了平台的位姿,进而可以得到平台的自由度。 ### 回答3: Stewart平台,也被称为平行机构,是一种多自由度的机器人系统。它由一个固定的平台和一组连接着平台和底座的活动杆臂组成。Stewart平台常用于航空航天、汽车制造和医疗器械等领域,具有高精度、高刚度和高灵活度等优点。其自由度是指机器人系统能够运动的独立方向。在Stewart平台自由度的计算是非常重要的。 在Stewart平台自由度的计算可以通过运用雅可比矩阵来实现。雅可比矩阵是一种将输入与输出之间的关系表示为线性变换的矩阵。在机器人系统,雅可比矩阵被用来计算机器人末端执行器的速度和位置,并确定机器人的自由度。因此,在计算Stewart平台的自由度时,需要遵循以下步骤: 1. 在每个杆臂的固定顶点上,定义一个坐标系并确定3D空间的点。 2. 确定每个活动的杆臂的长度和连接这些杆臂的球节坐标系(Sij)。 3. 计算每个球节坐标系的位置和速度雅可比矩阵。 4. 构造平台的全局雅可比矩阵,然后使用行列式计算其。 5. 实现一个根据平台上的特定点输入,更新该点在平台上的位置的程序,并对该程序进行自由度测试,以确保机器人系统有足够的自由度。 总之,Stewart平台的自由度计算是一个复杂且耗时的过程,需要计算机科学和机器人工程领域的专业知识。通过对自由度的正确计算,Stewart平台可以更加高效地实现它被设计的功能,并成为现代工业领域的重要组成部分。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宛如新生

转发即鼓励,打赏价更高!哈哈。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值