矩阵理解

前言: 恍惚学了线性代数已经两年,分考的倒是蛮高。但是自认为远远没有理解. 我想, 中国的大学教育依旧是逃不脱应试教育的。数学应该比做对几道题更有意义。翻过了大量资料,简单记录一下这些资料。


理解矩阵(一)

From1

空间

  • 由无穷多个位置组成。
  • 这些位置间有相互关系。
  • 空间能够容纳运动,且运动是瞬时的。

总之:“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

线性空间

  • 线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。
  • 在线性空间中选定基之后,向量刻画对象矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

矩阵

  • 矩阵是线性空间里跃迁(运动)的描述。

理解矩阵(二)

From2

区分线性变换与线性变换的描述.

  • 比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。

  • 同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
    - 猪 ----- 线性变换。镜头位置 ----- 一组基。照片 ----- 矩阵。

矩阵相似性

  • 若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:
    A = P − 1 B P A = P^{-1} B P A=P1BP
  • 相似性的作用: 我们可以用一些比较简单的矩阵来替代复杂的矩阵来描述同一个变换就好像人一样,总会倾向于用自己好看的照片来描述自己。

理解矩阵(三)

From3

矩阵描述了坐标系.

  • 矩阵不仅描述了一种运动,也描述了一个坐标系(矩阵非奇异的时候).
  • 运动等价于坐标系变换(相对运动观点).

两个角度

M a = b Ma = b Ma=b来说:

  • 运动: “向量a经过矩阵M所描述的变换,变成了向量b。”
  • 声明: “有一个向量,它在坐标系 M M M的度量下得到的度量结果向量为 a a a,那么它在坐标系 I I I的度量下,这个向量的度量结果是 b b b。”


行列式的本质是什么?

From4

  • 行列式是线性变换的伸缩因子。

如何理解矩阵的秩?

From5

  • 是图像经过矩阵变换之后的空间维度
  • 是列空间的维度
  • 源于秩序,非叫秩不可From6

矩阵的秩与行列式的几何意义

From7

  • 所谓线性变换(矩阵描述线性变换)的秩, 无非是变换后,还能保持非零体积的几何形状的最大维度。
  • 三体中的降维打击,就是一个行列式为0,秩比维度少一的一个线性变换。

  1. https://blog.csdn.net/myan/article/details/647511 ↩︎

  2. https://blog.csdn.net/myan/article/details/649018 ↩︎

  3. https://blog.csdn.net/myan/article/details/1865397 ↩︎

  4. https://www.zhihu.com/question/36966326/answer/70687817 ↩︎

  5. https://www.zhihu.com/question/21605094/answer/500813812 ↩︎

  6. http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html ↩︎

  7. https://zhuanlan.zhihu.com/p/19609459 ↩︎

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值