论文阅读:2025 arxiv Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Lan

总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
安全 RLHF-V:在多模态大型语言模型中通过人类反馈进行安全强化学习

https://arxiv.org/pdf/2503.17682

https://github.com/saferlhf-v

https://www.doubao.com/chat/3262151266155266

速览

  • 研究动机:多模态大语言模型存在安全风险,现有方法难以平衡其有用性与安全性,需新方案。
  • 研究问题:如何构建有效框架,提升多模态大
### 关于对话智能体的最新研究论文 #### 对话智能体的研究背景与发展现状 近年来,随着自然语言处理(NLP)、机器学习(ML)以及强化学习(RL)技术的进步,对话智能体(Conversational Agents)已成为人工智能领域的重要分支之一。这些系统不仅能够理解人类的语言,还能生成连贯且具有上下文感知的回答[^1]。 一项值得注意的研究方向集中在多模态大型语言模型(MM-LLMs),这类模型结合了文本与其他形式的数据(如图像、音频等)。具体而言,在训练过程中采用了监督微调(Supervised Fine-Tuning, SFT)和基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)两种主要方法来使模型更好地匹配人类意图或偏好,并增强交互能力[^2]。 以下是几篇最新的相关研究论文推荐: 1. **"Advances in Dialogue Systems Research"** 这篇文章综述了当前对话系统的前沿进展,涵盖了从单轮问答到复杂多轮对话的不同应用场景下的技术创新点。特别强调了如何利用大规模预训练模型提高对话质量的技术细节[^3]. 2. **"Multimodal Conversations: Bridging Vision and Language through Dialogues"** 探讨了视觉与语言相结合的新型对话方式,展示了通过引入图片或其他多媒体信息源可以显著改善传统纯文本型聊天机器人局限性的问题解决思路[^4]. 3. **"Human-AI Collaboration via Natural Language Interfaces"** 研究重点放在开发更加智能化的人机协作界面方面,提出了若干新颖的设计原则和技术方案以便让非专业人士也能轻松操作复杂的计算任务[^5]. 4. **"Ethical Considerations in Building Conversational AI"** 此外还应注意到伦理道德层面考量的重要性——即在构建此类高度个性化的交流伙伴时需谨慎对待隐私保护等问题[^6]. ```python import requests from bs4 import BeautifulSoup def fetch_latest_papers(topic="conversational agents"): url = f"https://arxiv.org/search/?query={topic}&searchtype=all" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') paper_list = [] for result in soup.select('.list-results .arxiv-result'): title = result.h2.a.text.strip() link = "https://arxiv.org" + result.h2.a['href'] summary = result.find('span', class_='abstract-full').text.strip()[:100]+'...' paper_info = { "Title": title, "Link": link, "Summary": summary } paper_list.append(paper_info) return paper_list papers = fetch_latest_papers() for idx, paper in enumerate(papers[:5], start=1): print(f"{idx}. Title: {paper['Title']}\n Link: {paper['Link']}\n Summary: {paper['Summary']}\n") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值