总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328
Learning Natural Language Constraints for Safe Reinforcement Learning of Language Agents
https://arxiv.org/pdf/2504.03185
https://www.doubao.com/chat/3262761026486530
速览
这篇论文是关于语言智能体安全强化学习的研究,提出了一个新框架来解决大语言模型在实际应用中的安全对齐问题。
- 研究背景:大语言模型(LLMs)被广泛用于高风险决策领域,但现有对齐训练方法存在不足。强化学习从人类反馈(RLHF)容易出现奖励过拟合、泛化性差等问题,难以保证模型在各种情况下都安全可靠。安全强化学习和逆强化学习(IRL)为解决这些问题提供了思路。