推荐系统基础知识——深度推荐模型(二)

深度推荐模型

组合模型

Wide & Deep

Paper : Wide & Deep Learning for Recommender Systems

Wide & Deep

  • 模型结构:结合简单模型“记忆能力”强与复杂模型“泛化能力”强的特点

    在这里插入图片描述

    在这里插入图片描述

    • Deep部分输入的是全量的特征向量,Wide部分输入的是几类离散型特征

    • Wide部分使用交叉积变换(Cross Product Transformation)组合特征

      ϕ k ( x ) = ∏ i = 1 d x i c k i c k i ∈ { 0 , 1 } \phi_{k}(\mathbf{x})=\prod_{i=1}^{d} x_{i}^{c_{k i}} \quad c_{k i} \in\{0,1\} ϕk(x)=i=1dxickicki{0,1}
      c k i c_{ki} cki为布尔变量,当第 i i i个特征属于第 k k k个组合特征时, c k i c_{ki} cki的值为 1 1 1,否则为 0 0 0 x i x_i xi为第 i i i个特征值

    • Wide与Deep部分的输出共同输入最后的逻辑回归,融合两部分优势

Deep & Cross

Paper : Deep & Cross Network for Ad Click Predictions

DCN

  • 模型结构

    在这里插入图片描述

    • DCN的Deep部分较Wide&Deep没有太多改动,主要是以Cross网络代替了Wide部分

    在这里插入图片描述

    • Cross部分的目的是增加特征之间的交互力度,使用多层交叉层(Cross Layer)对输入向量进行特征交叉

      x l + 1 = x 0 x l T w l + b l + x l = f ( x l , w l , b l ) + x l \mathbf{x}_{l+1}=\mathbf{x}_{0} \mathbf{x}_{l}^{T} \mathbf{w}_{l}+\mathbf{b}_{l}+\mathbf{x}_{l}=f\left(\mathbf{x}_{l}, \mathbf{w}_{l}, \mathbf{b}_{l}\right)+\mathbf{x}_{l} xl+1=x0xlTwl+bl+xl=f(xl,wl,bl)+xl

DeepFM

Paper : DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

DeepFM

  • 模型结构

    在这里插入图片描述

    • DeepFM利用FM代替Wide部分对特征进行交叉组合,最后与Deep输出融合

xDeepFM

Paper : xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems

xDeepFM

  • 模型结构

    • Linear部分类似于Wide部分,DNN部分类似于Deep部分

    在这里插入图片描述

  • CIN(Compressed Interaction Network)

    • CIN首先通过下式计算每一层的输出

      X h , ∗ k = ∑ i = 1 H k − 1 ∑ j = 1 m W i j k , h ( X i , ∗ k − 1 ∘ X j , ∗ 0 ) \mathbf{X}_{h, *}^{k}=\sum_{i=1}^{H_{k-1}} \sum_{j=1}^{m} \mathbf{W}_{i j}^{k, h}\left(\mathbf{X}_{i, *}^{k-1} \circ \mathbf{X}_{j, *}^{0}\right) Xh,k=i=1Hk1j=1mWijk,h(Xi,k1Xj,0)
      X i , ∗ k − 1 ∘ X j , ∗ 0 \mathbf{X}_{i, *}^{k-1} \circ \mathbf{X}_{j, *}^{0} Xi,k1Xj,0生成 H k − 1 x m H_{k-1}xm Hk1xm个vector,然后再通过与权重矩阵的相乘,“压缩”成一张feature map:

      在这里插入图片描述

    • CIN先通过特征交叉产生若干 h i h_i hi feature map,最后通过sum pooling输出,拼接,最后与其余模块融合一起分类

      在这里插入图片描述

FM模型的深度学习演化版本

NFM

Paper : Neural Factorization Machines for Sparse Predictive Analytics

Neural Factorization Machine

  • NFM用神经网络代替FM中二阶交叉的部分

    y ^ F M ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n ∑ j = i + 1 n v i T v j ⋅ x i x j \hat{y}_{F M}(\mathbf{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \cdot x_{i} x_{j} y^FM(x)=w0+i=1nwixi+i=1nj=i+1nviTvjxixj

    y ^ N F M ( x ) = w 0 + ∑ i = 1 n w i x i + f ( x ) \hat{y}_{N F M}(\mathbf{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+f(\mathbf{x}) y^NFM(x)=w0+i=1nwixi+f(x)

    在这里插入图片描述

  • NFM在Embedding层(这里的Embedding层是全连接层)与MLP之间加入了特征交叉池化层(Bi-Interaction Pooling Layer)

    f B I ( V x ) = ∑ i = 1 n ∑ j = i + 1 n x i v i ⊙ x j v j f_{B I}\left(\mathcal{V}_{x}\right)=\sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{i} \mathbf{v}_{i} \odot x_{j} \mathbf{v}_{j} fBI(Vx)=i=1nj=i+1nxivixjvj
    其中 V x = { x 1 v 1 , … , x n v n } \mathcal{V}_{x}=\left\{x_{1} \mathbf{v}_{1}, \ldots, x_{n} \mathbf{v}_{n}\right\} Vx={x1v1,,xnvn}是所有特征域的Embedding集合(只包括了非零输入元素的Embedding Vector)

FNN

Paper : Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction

Factorization-machine supported Neural Network

  • 使用FM训练出的特征隐向量权重初始化Embedding层权重(实际上是初始化Embedding神经元与输入神经元之间的连接权重)

    y F M ( x ) : = sigmoid ⁡ ( w 0 + ∑ i = 1 N w i x i + ∑ i = 1 N ∑ j = i + 1 N ⟨ v i , v j ⟩ x i x j ) y_{\mathrm{FM}}(\boldsymbol{x}):=\operatorname{sigmoid}\left(w_{0}+\sum_{i=1}^{N} w_{i} x_{i}+\sum_{i=1}^{N} \sum_{j=i+1}^{N}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle x_{i} x_{j}\right) yFM(x):=sigmoid(w0+i=1Nwixi+i=1Nj=i+1Nvi,vjxixj)

    在这里插入图片描述

  • 26
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值