[论文笔记05] Learning to Learn from Noisy Labeled Data(MLNT)

原文:https://arxiv.org/pdf/1812.05214.pdf

code:https://github.com/LiJunnan1992/MLNT

知乎:Learning to Learn from Noisy Labeled Data - 知乎

本文着重介绍方法以及加深对元学习的理解

Abstract

本文提出了一个 noise-tolerant 训练算法,其中meta-learning update在常规的梯度更新之前(因为网络包含两部分loss,meta loss 的更新是在classification loss 之前的)。本文针对每一个mini-batch,都会人工合成一些噪声,形成一个这个mini-batch的噪声集合(就是会有M个重复的mini-batch 数据,但是它们label里面的噪声是不一样的),然后用这个噪声集合进行元学习,通过和teacher-network 的训练结果保持一致来使得网络不受噪声的影响。

Introduction

本文提出了一个基于meta-learning的噪声容忍的训练方法,该方法不用任何附加的监督信息和clean label data。而且我们的算法是不针对与任何特定的模型的,只要是反向梯度训练的模型,都可以适用于本算法。

在noisy label 训练中的突出问题是在训练过程中对noisy label的过拟合会造成模型表现能力的下降。我们通过优化模型参数来解决这个问题,通过优化使得模型不容易过拟合,更具有鲁棒性。

更具体的来说,针对于一个小批次,我们提出了一个meta-objective来训练模型,使模型在经过传统的反向梯度传播之后不会过拟合noisy label。该meta-objective鼓励模型在经过各种合成噪声的训练之后产生一致的预测结果。本文提出算法的主旨思想是,一个噪声容忍模型,不管标签的噪声是怎样的,都应该能够始终如一的从数据中学习到基础的feature

本文的主要贡献:

1. 提出了一个噪声容忍度很高的模型,meta-objective 在传统的反向更新之前优化。任何用反向梯度更新参数的模型都可以应用到本算法中,我们的目标是优化一个不会过度拟合噪声的模型。

2. 我们把meta-objective定义为:训练模型,使其在学习了各种合成的噪声标签进行梯度更新后,更新后的模型给出的预测结果与教师模型一致。

Related Work

Meta-Learning

我们的方法和MAML最为相似(Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks),MAML希望meta-learner可以通过在初始参数的基础上进行一或多步的梯度调整,来达到仅用少量数据就能快速适应新task的目的。本文的算法和MAML都是不针对于特定模型并且在simulated meta-task上梯度更新来进行训练。我们和MAML的不同之处在于,MAML致力于在面对新的task上时,loss function可以很快的适应到当前任务,而我们的任务是希望学习到一个noise-tolerant模型。除此之外,MAML在meta-test上面使用分类损失进行训练,而我们和一个teacher model 使用一致性损失进行训练。

Self-Ensembling

本文提出的算法有借鉴《Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results.》这篇文章的思想,该论文的算法有两个网络,一个teacher network,一个student network,teacher network的权值是student network 的移动平均值,他们强制这两个网络的预测结果是相同的。在本文中,teacher-network是在meta-test里面的,我们使用teacher-network来指导student-network网络的训练,从而使其more tolerant to label noise。

PS: 大概简述下这个算法,首先student 和 teacher network的网络架构是相同的,teacher network 的参数是 student network 的滑动平均,两个网络输入也是相同的,里面带有真实标签的样本,也带有无标签的样本。这个mini-batch 同时输入到这两个网络里,然后利用student network产生的对真实样本的预测和真实标签做一个交叉熵验证称为classification cost,而后student network 和teacher network 会有一个一致性损失(consistency loss,为了让这两个网络的预测结果保持一致),然后把这两部分loss合起来,一起优化。

Method

Meta-Learning based Noise-Tolerant Training

我们的目的是使网络找到Noise-Tolerant 的网络。我们通过在每个mini-batch 的更新之前引入了一个meta-learning update 来使得网络more tolerant to label noise。meta-learning update这部分模拟了用噪声数据训练的过程,从而避免网络对噪声数据过拟合。

具体来说,会给mini-batch里面的每一张图片生成多种噪声label,针对每一个合成的噪声标签集合,我们用one gradient update来更新网络参数,并且要求更新后的网络产生的预测结果要和没有受噪声影响的teacher network 结果一致。 如下图所示,meta-learning update优化了模型,使其能够更好地利用conventional gradient update对原有的mini-batch进行学习。实际上,我们的目标是找到对标签噪声不那么敏感的模型参数,并且能够在标签噪声影响下始终如一地从数据中学习基础知识。 提出的meta learning update包括meta train和meta test两个步骤。【之后的具体步骤讲的会清楚一些】


 Meta-train 


 Meta-test

算法流程图

 


 Iterative Training


 如何理解Meta-Learning

 与MAML类似

在 a meta-learning based noise-tolerant (MLNT) training 中,support set就是人造标签,L^{meta}就是一致性损失。在meta-learning update之后,获得比较好的初始化参数,再更新一步得到噪声容忍度高的参数。

学习邻居一致性是一种用于处理噪声标签的方法。在现实中,数据集中的标签常常会受到一些错误或噪声的影响,这会对模型的训练和泛化能力造成不利影响。而学习邻居一致性则通过考虑样本的邻居关系来进一步提高模型的鲁棒性。 学习邻居一致性方法的核心思想是基于数据的局部性原理,即相似的样本倾向于具有相似的标签。该方法通过比较样本的标签,检测和修复噪声标签,并将不确定性信息引入模型训练过程中。 具体而言,学习邻居一致性方法会首先构建一个样本的邻居图,其中每个样本的邻居是根据特征相似性确定的。然后,该方法会使用邻居信息来计算每个样本的标签一致性得分。通过比较样本自身的标签和邻居的标签,可以有效地检测和纠正噪声标签。 在模型的训练过程中,学习邻居一致性方法会引入一个邻居一致性损失函数,用于最大化样本与其邻居的标签一致性得分。这样,模型会倾向于对邻居们的标签一致性进行学习,从而提高模型的鲁棒性和泛化能力。 总而言之,学习邻居一致性方法通过考虑样本的邻居关系来处理噪声标签。它通过检测和修正噪声标签,引入不确定性信息,并最大化标签一致性得分来提高模型的鲁棒性。这种方法在处理噪声标签方面具有一定的优势,并可在实际应用中取得良好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值