Title
CVPR 2020 camera ready
Summary
目前最先进的目标检测器依赖于回归和分类一系列可能的锚点,这些锚点根据它们与相应的GT的IoU分为正样本和负样本。这样的设置方法会导致歧义性标签的产生,这可能会产生噪音,并且对训练具有挑战性。
作者通过设计与锚相关联的cleanliness score来缓解由不完美的标签分配产生的噪声影响。在不增加任何额外计算开销的情况下估计出的cleanliness score,它不仅可以作为软标签来监督分类分支的训练,而且作为样本重加权因子来提高定位和分类精度。
所提出的方法在不同的骨干网络下可以稳步地提高RetinaNet约2%。
Research Objective
当下卡IoU threshold的label assignment strategy会对网络训练引入noise,所以作者希望能够减轻这种noisy label的影响。