【论文笔记】:Learning from Noisy Anchors for One-stage Object Detection

本文探讨了一阶段目标检测器中由于阈值划分导致的噪声标签问题。作者提出了一个清洁度分数来估计锚点的相关性,作为软标签和样本重加权因子,以改善定位和分类精度。实验表明,这种方法在不同骨干网络下能提升RetinaNet的性能约2%。
摘要由CSDN通过智能技术生成

Title

在这里插入图片描述

CVPR 2020 camera ready

Summary

目前最先进的目标检测器依赖于回归和分类一系列可能的锚点,这些锚点根据它们与相应的GT的IoU分为正样本和负样本。这样的设置方法会导致歧义性标签的产生,这可能会产生噪音,并且对训练具有挑战性。
作者通过设计与锚相关联的cleanliness score来缓解由不完美的标签分配产生的噪声影响。在不增加任何额外计算开销的情况下估计出的cleanliness score,它不仅可以作为软标签来监督分类分支的训练,而且作为样本重加权因子来提高定位和分类精度。
所提出的方法在不同的骨干网络下可以稳步地提高RetinaNet约2%。

Research Objective

当下卡IoU threshold的label assignment strategy会对网络训练引入noise,所以作者希望能够减轻这种noisy label的影响。

Problem Statement

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值