读《微波工程(第三版)》笔记 (4:波方程和基本平面波的解)

目录

亥姆霍兹方程

推导

无耗媒质中的平面波

无耗平面波的解形式

入射和反射

相速和群速

相速(和波长)

群速

磁场的解及波阻抗

一般有耗媒质中的平面波

有耗媒质平面波的解

衰减

磁场解及波阻抗

良导体中的平面波

两道题中传播常数的近似表达

趋肤深度


亥姆霍兹方程

前面已经学习了各种情况下的麦克斯韦方程组。如果电磁场既是时谐场,无源,介质又是线性、各向同性且均匀,这种条件下的麦克斯韦方程组可以进一步推导出新的方程——亥姆霍兹方程

亥姆霍兹方程是一个描述电磁波的椭圆偏微分方程。

推导

无源、线性、各向同性且均匀的区域,麦克斯韦方程组中的两个旋度方程可写为:

\begin{} {\color{black} \triangledown \times \overrightarrow{E} =-j\omega \mu \overrightarrow{H}} \\\\ \triangledown \times \overrightarrow{H} =j\omega \mu \overrightarrow{E} \end{}

两个方程拥有很高的对偶性,可以用来求解电场和磁场。取①式旋度,再代入②式有:

\triangledown \times \triangledown \times\overrightarrow{E} =-j\omega \mu \triangledown \times\overrightarrow{H} = \omega ^{2}\mu \varepsilon \overrightarrow{E}

上式最左侧和最右侧只与电场矢量有关,最左侧运用双叉乘公式:

\triangledown \times \triangledown \times\overrightarrow{A} = \triangledown(\triangledown\cdot \overrightarrow{A})-\triangledown^{2}\overrightarrow{A}

并且因为无源区的限制,电场的散度(正比于电荷密度)为0,因此有

\triangledown ^{2} \overrightarrow{E}+\omega ^{2}\mu \varepsilon \overrightarrow{E}=0

这就是亥姆霍兹方程中,\overrightarrow{E}的波方程

\overrightarrow{H}的波方程也是类似推导,结果如下:

\triangledown ^{2} \overrightarrow{H}+\omega ^{2}\mu \varepsilon \overrightarrow{H}=0

对于特定的波和介质,常数k=\omega \sqrt{\mu \varepsilon }是确定的,被称为媒质的波数/传播常数,单位为1/m。

引入k来简化波动方程,呈现以下形式:

\begin{} {\color{black} \triangledown ^{2} \overrightarrow{E}+k^2\overrightarrow{E}=0}\\\\ \triangledown ^{2} \overrightarrow{H}+k^2\overrightarrow{H}=0 \end{}

波动方程是引入波行为的一种方法,下面将从简入深,研究其解。

无耗媒质中的平面波

无耗平面波的解形式

无耗媒质中,没有阻尼损耗,\varepsilon\mu都是实数。上述波方程的一个平面波基本解可以通过一个只有{\color{red} \widehat{x}}分量且在 x 和 y 方向均匀(不变)的电场(沿z轴传播)得到(即:\frac{\partial }{\partial x}=\frac{\partial }{\partial y}=0)。

亥姆霍兹方程可以由此简化为:

\frac{\partial ^2E_{x}}{\partial z^2}+k^2E_x=0

通过代入法(总之高数是学过这种偏微方程的解的,叫不叫代入法我也不清楚)可以轻松求解。该方程有两个独立的解,通解形式为:

E_x(z)=E^+e^{-jkz}+E^-e^{jkz}

,其中E+和E-是任意振幅,常数。

上述是在频率下的时谐形式

如果写成时域形式,则是:

E_x(z,t)=E^+cos(wt-kz)+E^-cos(wt+kz)

入射和反射

首先,已经假定了E^+E^-是实常数。并且上式第一项表示沿z+方向传播的波(可称为入射波),第二项表示沿z-方向传播的波(可称为反射波)。为什么这么定义?因为正向传播的波必须保证当时间增加时,其相位沿着z+方向移动。 而随着时间t增加,第一项的z也必须增加,才能保证相位一定,也就是说当时间流逝,等相位点沿着 z+方向移动了。

也可以利用微分来解释。我们将(wt+kz)同时取微分,其中w和k都是确定的值,不受到微分运算,所以得到:

w\cdot dt-k\cdot dz=0

把微分归到一边,常数归到一边,就有:

\frac{w}{k}=\frac{dz}{dt}

可以看到,波沿z+方向的前进速度是正数,所以波是正向传播的、入射的。

相速和群速

相速(和波长)

前面通过坐标对时间的偏微分求出了一个速度,其实这个速度就是波的速度,被称为相速

v_{p}=\frac{dz}{dt}=\frac{d}{dt}(\frac{wt-constant}{k})=\frac{w}{k}=\frac{1}{\sqrt{\mu \varepsilon }}

对于单一频率的波,波速一般指相速,也可以说是相位面前进的速度;

真空中,有

v_{p}=\frac{1}{\sqrt{\mu_0\varepsilon _0 }}=2.998\times 10^8m/s

就是光速

波长,被定义为波在一个确定的时刻,两个相邻的极大值(或极小值或其他任意参考点)之间的距离,因此:

\begin{} {\color{black} [wt-kz]-[wt-k(z+\lambda)]=2\pi} \\\\ \lambda=\frac{2\pi}{k}=\frac{2\pi v_p}{\omega}=\frac{v_p}{f} \end{}

群速

群速度定义为:包络波上任一恒定相位点的推进速度。

群速是不同于相速的,后者的定义是:等相位面的推进速度。

比较好说明区别的例子,是AM(调幅)波。了解过射频理论的朋友应该知道,调幅波就是使载波的振幅随低频音频信号的变化而变化,而调幅波的包络就具有音频信号的振幅特性,所以包络的频率是很低的,包络面的推进速度也和音频信号的相速有关,和载波本身的相速没有关系。

更多的可以参考这一篇知乎:怎样理解相速和群速?

磁场的解及波阻抗

电磁场的平面波完整定义必须包含磁场。已知电场,可以用麦克斯韦方程组的旋度方程很快求出。磁场的解形式如下:

H_y(z)=\frac{1}{\eta}(E^+e^{-jkz}-E^-e^{jkz})

其中,\eta =\frac{\omega\mu}{k}=\sqrt{\frac{\mu}{\epsilon}},为平面波的波阻抗,定义为\overrightarrow{E}\overrightarrow{H}之比。

真空中,

\eta_0 =\sqrt{\frac{\mu_0}{\epsilon_0}}=377\Omega=120\pi\Omega

注意,矢量\overrightarrow{E}沿着x轴,矢量\overrightarrow{H}沿着y轴,是彼此正交的,且都没有z轴分量,这也是TEM(横电磁场)波的一个特征。


一般有耗媒质中的平面波

有耗媒质平面波的解

有耗媒质是导电的,电导率为σ,那么麦克斯韦旋度方程应该写为:

\begin{} {\color{black} \triangledown \times \overrightarrow{E} =-j\omega \mu \overrightarrow{H}} \\\\ \triangledown \times \overrightarrow{H} =j\omega \mu \overrightarrow{E}+\sigma\overrightarrow{E} \end{}

则推导出来的电场波方程是:

\triangledown ^{2} \overrightarrow{E}+\omega ^{2}\mu \varepsilon(1-j\frac{\sigma}{\omega \epsilon })\overrightarrow{E}=0

它和无耗媒质的波方程有很高的相似性,区别在于波数从 k^2=\omega^2\mu\epsilon^2 被 k^2=\omega^2\mu\epsilon^2(1-j(\sigma/\omega\epsilon))代替。根据这个,定义该媒质的复传播常数:

\gamma =\alpha+j\beta=j\omega\sqrt{\mu\epsilon}\sqrt{1-j\frac{\sigma}{\omega\epsilon}}

带入波动方程以后,可以得到:

\frac{\partial ^2E_{x}}{\partial z^2}-\gamma^2E_x=0

它的解为:

 E_x(z)=E^+e^{-\gamma z}+E^-e^{+\gamma z}

衰减

对于正向传输的波,它的传播因子是

\begin{} {\color{black} e^{-\gamma z}=e^{-\alpha z}e^{-j\beta z}} \\\\ e^{-\gamma z}=e^{-\alpha z}cos(wt-\beta z) \end{}

这代表一个眼z轴正向传播的波,其相速和波长和传播因子β相关:

\begin{} {\color{black} v_p=\frac{\omega}{\beta} }\\\\ \lambda=\frac{2\pi}{\beta} \end{}

同时具有衰减因子α —— e^{-\alpha z}

(如果去掉衰减,有这样的关系:\gamma=jk;\;\alpha=0;\;\beta=k。)

损耗也可以处理为复介电常数(此时要求σ=0并且将电导率的影响用复介电常数来表征)

\begin{} {\color{black} \gamma=j\omega\sqrt{\mu\epsilon}=jk=j\omega\sqrt{\mu\epsilon^{'}(1-j\;tan\delta)}}\\\\ tan\delta = \frac{\epsilon^{''}}{\epsilon^{'}} \end{}

以上tanδ代表材料的损耗角正切。

其实这里和之前媒质中的边界条件中记录的损耗角正切有一点区别,目前我也不知道原因。欢迎知道的读者在评论区告诉我~

磁场解及波阻抗

磁场可以计算为:

H_Y(z)=\frac{j}{\omega\mu}\frac{\partial E_x}{\partial z}=-\frac{j\gamma}{\omega\mu}(H^+e^{-\gamma z}-H^-e^{+\gamma z})

波阻抗定义为电场与磁场的比值(在这里一般为复数):

\eta = \frac{j\omega\mu}{\gamma}

将波阻抗带入可以得到:

H_Y(z)=-\frac{1}{\eta}(H^+e^{-\gamma z}-H^-e^{+\gamma z})

良导体中的平面波

两道题中传播常数的近似表达

良导体实际上会造成损耗和衰减,其 导电电流 >> 位移电流,或者说 σ >> ωε

绝大多数金属可以看作良导体,在良导体中,宁可采用复介电常数,也不采用电导率,这个条件也等效于:ε'' >> ε'

忽略位移电流项,良导体中的传播常数可以适当的近似(数学近似)为:

\gamma = \alpha+j\beta \approx j\omega\sqrt{\mu\epsilon}\sqrt{\frac{\sigma}{j\omega\epsilon}}=(1+j)\sqrt{\frac{\omega\mu\sigma}{2}}

趋肤深度

从而出现了趋肤深度(穿透的特征深度)的定义公式:

\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}

它的描述是:导体中的场,在传输一个趋肤深度的距离后,其振幅就衰减为1/e,即大约36.8%。这是由于衰减因子:

e^{-\alpha z} = e^{-\alpha \delta_s}=e^{-\alpha \cdot \frac{1}{\alpha}}= e^{-1}

由于趋肤深度和频率开方的导数成正比,所以在微波频率下,趋肤深度是非常小的一个值。这个结果的实际重要性,在于对低耗微波元件而言,只需要一个薄片良导体,就可以将信号衰减到极小了。


那么本节就写到这里🌹

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值