目录
亥姆霍兹方程
前面已经学习了各种情况下的麦克斯韦方程组。如果电磁场既是时谐场,无源,介质又是线性、各向同性且均匀,这种条件下的麦克斯韦方程组可以进一步推导出新的方程——亥姆霍兹方程。
亥姆霍兹方程是一个描述电磁波的椭圆偏微分方程。
推导
无源、线性、各向同性且均匀的区域,麦克斯韦方程组中的两个旋度方程可写为:
两个方程拥有很高的对偶性,可以用来求解电场和磁场。取①式旋度,再代入②式有:
上式最左侧和最右侧只与电场矢量有关,最左侧运用双叉乘公式:
并且因为无源区的限制,电场的散度(正比于电荷密度)为0,因此有
这就是亥姆霍兹方程中,的波方程
的波方程也是类似推导,结果如下:
对于特定的波和介质,常数是确定的,被称为媒质的波数/传播常数,单位为1/m。
引入k来简化波动方程,呈现以下形式:
波动方程是引入波行为的一种方法,下面将从简入深,研究其解。
无耗媒质中的平面波
无耗平面波的解形式
无耗媒质中,没有阻尼损耗,和
都是实数。上述波方程的一个平面波基本解可以通过一个只有
分量且在 x 和 y 方向均匀(不变)的电场(沿z轴传播)得到(即:
)。
亥姆霍兹方程可以由此简化为:
通过代入法(总之高数是学过这种偏微方程的解的,叫不叫代入法我也不清楚)可以轻松求解。该方程有两个独立的解,通解形式为:
,其中E+和E-是任意振幅,常数。
上述是在频率下的时谐形式。
如果写成时域形式,则是:
入射和反射
首先,已经假定了和
是实常数。并且上式第一项表示沿
方向传播的波(可称为入射波),第二项表示沿
方向传播的波(可称为反射波)。为什么这么定义?因为正向传播的波必须保证当时间增加时,其相位沿着
方向移动。 而随着时间
增加,第一项的
也必须增加,才能保证相位一定,也就是说当时间流逝,等相位点沿着
方向移动了。
也可以利用微分来解释。我们将(wt+kz)同时取微分,其中w和k都是确定的值,不受到微分运算,所以得到:
把微分归到一边,常数归到一边,就有:
可以看到,波沿方向的前进速度是正数,所以波是正向传播的、入射的。
相速和群速
相速(和波长)
前面通过坐标对时间的偏微分求出了一个速度,其实这个速度就是波的速度,被称为相速:
对于单一频率的波,波速一般指相速,也可以说是相位面前进的速度;
真空中,有
就是光速。
波长,被定义为波在一个确定的时刻,两个相邻的极大值(或极小值或其他任意参考点)之间的距离,因此:
群速
群速度定义为:包络波上任一恒定相位点的推进速度。
群速是不同于相速的,后者的定义是:等相位面的推进速度。
比较好说明区别的例子,是AM(调幅)波。了解过射频理论的朋友应该知道,调幅波就是使载波的振幅随低频音频信号的变化而变化,而调幅波的包络就具有音频信号的振幅特性,所以包络的频率是很低的,包络面的推进速度也和音频信号的相速有关,和载波本身的相速没有关系。
更多的可以参考这一篇知乎:怎样理解相速和群速?
磁场的解及波阻抗
电磁场的平面波完整定义必须包含磁场。已知电场,可以用麦克斯韦方程组的旋度方程很快求出。磁场的解形式如下:
其中,,为平面波的波阻抗,定义为
和
之比。
真空中,
注意,矢量沿着x轴,矢量
沿着y轴,是彼此正交的,且都没有z轴分量,这也是TEM(横电磁场)波的一个特征。
一般有耗媒质中的平面波
有耗媒质平面波的解
有耗媒质是导电的,电导率为σ,那么麦克斯韦旋度方程应该写为:
则推导出来的电场波方程是:
它和无耗媒质的波方程有很高的相似性,区别在于波数从 被
代替。根据这个,定义该媒质的复传播常数:
带入波动方程以后,可以得到:
它的解为:
衰减
对于正向传输的波,它的传播因子是
这代表一个眼z轴正向传播的波,其相速和波长和传播因子β相关:
同时具有衰减因子α ——
(如果去掉衰减,有这样的关系:。)
损耗也可以处理为复介电常数(此时要求σ=0并且将电导率的影响用复介电常数来表征)
以上tanδ代表材料的损耗角正切。
其实这里和之前媒质中的边界条件中记录的损耗角正切有一点区别,目前我也不知道原因。欢迎知道的读者在评论区告诉我~
磁场解及波阻抗
磁场可以计算为:
波阻抗定义为电场与磁场的比值(在这里一般为复数):
将波阻抗带入可以得到:
良导体中的平面波
两道题中传播常数的近似表达
良导体实际上会造成损耗和衰减,其 导电电流 >> 位移电流,或者说 σ >> ωε。
绝大多数金属可以看作良导体,在良导体中,宁可采用复介电常数,也不采用电导率,这个条件也等效于:ε'' >> ε' 。
忽略位移电流项,良导体中的传播常数可以适当的近似(数学近似)为:
趋肤深度
从而出现了趋肤深度(穿透的特征深度)的定义公式:
它的描述是:导体中的场,在传输一个趋肤深度的距离后,其振幅就衰减为1/e,即大约36.8%。这是由于衰减因子:
由于趋肤深度和频率开方的导数成正比,所以在微波频率下,趋肤深度是非常小的一个值。这个结果的实际重要性,在于对低耗微波元件而言,只需要一个薄片良导体,就可以将信号衰减到极小了。
那么本节就写到这里🌹