读《微波工程(第三版)》笔记 (1:麦克斯韦方程组)

目录

背景:

麦克斯韦方程组(普通时变形式):

本构关系:

麦克斯韦方程组的非独立性(暂且先这么叫):

电流连续性方程:

麦克斯韦方程组的积分形式:

麦克斯韦方程组的时谐形式:


背景:

麦克斯韦在1873年发布了麦克斯韦方程,描述了宏观意义上的电现象、磁现象;并从理论考虑出发,提出了位移电流的假说(导致赫兹马可尼发现电磁波)。

麦克斯韦的工作主要是总结性质的,建立在由高斯安培法拉第以及其他前人的大量实验和理论知识的基础之上。

本章主要讨论:麦克斯韦方程组、边界条件、介电和磁性材料影响。

麦克斯韦方程组(普通时变形式):

\triangledown \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}-\overrightarrow{M}                                                                            法拉第电磁感应定律

\triangledown \times \overrightarrow{H} = \frac{\partial \overrightarrow{D}}{\partial t}+\overrightarrow{J}                                                             安培环路定律(麦克斯韦修正的)

\triangledown \cdot \overrightarrow{D} = \rho                                                                                                              电高斯定律

\triangledown \cdot \overrightarrow{B} = 0                                                                                磁通连续新定律(磁高斯定律)


E:电场强度,单位 V/m

H:磁场强度,单位 A/m

D:电位移矢量,单位 C/m^2

B:磁感应强度,单位 Wb/m^2

M:(虚拟的)磁流密度,单位 V/m^2

J:电流密度,单位 A/m^2

ρ:电荷密度,单位 C/m^3


电磁场的源是电流J磁流M电荷密度ρ。其中磁流M是虚拟的,只是为了数学上的方便,磁流的真实源通常是一个电流环或与此类似的磁偶极子(比如闭合载流线圈)。再加之电流J其实是电荷密度ρ的运动形成,所以电荷密度ρ才是电磁场最根本的源


本构关系:

在真空中,电磁场强度与其通量密度之间有着简单的关系:

\overrightarrow{B} = \mu _{0}\overrightarrow{H}

\overrightarrow{D} = \varepsilon _{0}\overrightarrow{E}

这里想提一下介质的几种属性:

1. 各项同/异性:介质的性质不会因方向的不同而有所变化(比如东西、南北,都满足上述的标量形式)

2. (非)线性:介质的性质是线性的(比如电位移矢量与电场强度的数值成固定比)

3. (非)均匀:介质的电磁参数是固定的,或者说不是坐标的函数(比如理想均匀导体每个点电导率相同)

4. (非)色散:不同频率的电磁波在介质中的介电常数相同(介电常数与频率无关)(显然可以色散的棱镜就包含有色散介质)

对于导体,则有:

\overrightarrow{J} = \sigma _{0}\overrightarrow{E}

 上述要求是各向同性、线性、均匀(色散会在之后提及)。


麦克斯韦方程组的非独立性(暂且先这么叫):

麦克斯韦方程组的四个式子不完全独立

对①式求散度,由于不存在磁荷,所以磁流元的散度=0,可以推出④式;


电流连续性方程:

对②式求散度,带入本构方程和④式,可以推出电流连续性方程:

\triangledown \cdot \overrightarrow{J} +\frac{\partial \rho }{\delta t} = 0

左边第一项,电流密度的散度代表由一点流出的电流(套用高斯公式的物理意义)

左边第二项,电荷密度的时间变化率代表流入同一点的电荷量

所以该方程表示:电荷是守恒的,或者说电流是连续的 

麦克斯韦方程组的积分形式:

利用各种矢量积分定理,可将③④微分方程转化为积分形式:

\oint _{L}\overrightarrow{E}\cdot d\overrightarrow{l} = -\iint_{\Omega}^{}(\frac{\partial \overrightarrow{B}}{\partial t})\cdot d\overrightarrow{S}

代表电场的闭曲线积分与包围曲面内磁通变化负相关。

\oint _{L}\overrightarrow{H}\cdot d\overrightarrow{l} = \iint_{\Omega}^{}(\frac{\partial \overrightarrow{D}}{\partial t}+\overrightarrow{J})\cdot d\overrightarrow{S}

代表磁场的闭曲线积分等于流过包围曲面的全电流。

\oint _{S}\overrightarrow{D}\cdot d\overrightarrow{S} = Q

代表流出封闭曲面的电位移矢量为封闭曲面包围体积内的电荷量,电场有源。

 \oint _{S}\overrightarrow{B}\cdot d\overrightarrow{S} = 0

代表流出封闭曲面的磁通量为0,磁场无源(无散度源)。


麦克斯韦方程组的时谐形式:

本书中绝大部分只涉及到具有正弦简谐变化的场,所以其实有如下关系:

\overrightarrow{E}(x,y,z,t) = \overrightarrow{x}A(x,y,z)cos(wt+\phi )

也就是默认电场沿着x正方向且为正弦变化。

在这样的条件下,正弦简谐量对时间的微分有这样的关系:

\frac{\partial \overrightarrow{A}}{\partial t} = j\omega \overrightarrow{A}

所以可写出时谐形式的麦克斯韦方程组:

\triangledown \times \overrightarrow{E} = -j\omega \overrightarrow{B}-\overrightarrow{M}

\triangledown \times \overrightarrow{H} = j\omega \overrightarrow{D}+\overrightarrow{J}

\triangledown \cdot \overrightarrow{D} = \rho

 \triangledown \cdot \overrightarrow{B} = 0

而傅里叶变换可以用来将任意频率ω下的麦克斯韦方程的解转化为任意时间依赖关系的解。


本期就到这为止🌹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值