目录
背景:
麦克斯韦在1873年发布了麦克斯韦方程,描述了宏观意义上的电现象、磁现象;并从理论考虑出发,提出了位移电流的假说(导致赫兹和马可尼发现电磁波)。
麦克斯韦的工作主要是总结性质的,建立在由高斯、安培、法拉第以及其他前人的大量实验和理论知识的基础之上。
本章主要讨论:麦克斯韦方程组、边界条件、介电和磁性材料影响。
麦克斯韦方程组(普通时变形式):
法拉第电磁感应定律
安培环路定律(麦克斯韦修正的)
电高斯定律
磁通连续新定律(磁高斯定律)
E:电场强度,单位 V/m
H:磁场强度,单位 A/m
D:电位移矢量,单位 C/m^2
B:磁感应强度,单位 Wb/m^2
M:(虚拟的)磁流密度,单位 V/m^2
J:电流密度,单位 A/m^2
ρ:电荷密度,单位 C/m^3
电磁场的源是电流J、磁流M、电荷密度ρ。其中磁流M是虚拟的,只是为了数学上的方便,磁流的真实源通常是一个电流环或与此类似的磁偶极子(比如闭合载流线圈)。再加之电流J其实是电荷密度ρ的运动形成,所以电荷密度ρ才是电磁场最根本的源。
本构关系:
在真空中,电磁场强度与其通量密度之间有着简单的关系:
这里想提一下介质的几种属性:
1. 各项同/异性:介质的性质不会因方向的不同而有所变化(比如东西、南北,都满足上述的标量形式)
2. (非)线性:介质的性质是线性的(比如电位移矢量与电场强度的数值成固定比)
3. (非)均匀:介质的电磁参数是固定的,或者说不是坐标的函数(比如理想均匀导体每个点电导率相同)
4. (非)色散:不同频率的电磁波在介质中的介电常数相同(介电常数与频率无关)(显然可以色散的棱镜就包含有色散介质)
对于导体,则有:
上述要求是各向同性、线性、均匀(色散会在之后提及)。
麦克斯韦方程组的非独立性(暂且先这么叫):
麦克斯韦方程组的四个式子不完全独立。
对①式求散度,由于不存在磁荷,所以磁流元的散度=0,可以推出④式;
电流连续性方程:
对②式求散度,带入本构方程和④式,可以推出电流连续性方程:
左边第一项,电流密度的散度代表由一点流出的电流(套用高斯公式的物理意义)
左边第二项,电荷密度的时间变化率代表流入同一点的电荷量
所以该方程表示:电荷是守恒的,或者说电流是连续的
麦克斯韦方程组的积分形式:
利用各种矢量积分定理,可将③④微分方程转化为积分形式:
代表电场的闭曲线积分与包围曲面内磁通变化负相关。
代表磁场的闭曲线积分等于流过包围曲面的全电流。
代表流出封闭曲面的电位移矢量为封闭曲面包围体积内的电荷量,电场有源。
代表流出封闭曲面的磁通量为0,磁场无源(无散度源)。
麦克斯韦方程组的时谐形式:
本书中绝大部分只涉及到具有正弦简谐变化的场,所以其实有如下关系:
也就是默认电场沿着x正方向且为正弦变化。
在这样的条件下,正弦简谐量对时间的微分有这样的关系:
所以可写出时谐形式的麦克斯韦方程组:
而傅里叶变换可以用来将任意频率ω下的麦克斯韦方程的解转化为任意时间依赖关系的解。
本期就到这为止🌹