读《微波工程(第三版)》笔记 (3:介质中的边界条件)

求解微分形式的麦克斯韦方程组(详见笔记1) ,必须已知边界上的值时,才能有完整切唯一的解。

常用的方法是:在一定的区域求解无源麦克斯韦方程组获得带有未知系数的通解,再利用边界条件来求得这些系数

我的理解:麦克斯韦方程组+边界条件=特解


目录

一般材料分界面上的场

分析模型

电位移矢量

磁感应强度

电场强度

磁场强度

介质分界面的场

理想导体(电壁)分界面的场

磁壁边界条件


一般材料分界面上的场

分析模型

考虑两种媒质之间的平面界面,如图3.1所示:

图 3.1

其中,两个介质内的场和分界面上的场都用颜色进行了区分。

利用积分形式的麦克斯韦方程组来推导分界面上的的法向、切向场的边界条件

 我们可以选取如图3.2所示的闭合高斯曲面作为分析工具,主要用来分析电位移矢量和磁感应强度。它是一个圆柱面,上下底面横跨两种媒质,并且要求高度h->0。

 图 3.2

分析磁场、电场时,可以使用图3.3

 图 3.3(这里有点小错误,别管两个磁感应强度

电位移矢量

电位移矢量满足高斯定理:

\oint _{S}\overrightarrow{D}\cdot d\overrightarrow{s}=\int _{V}\rho d\nu=Q

由于高度h趋于0,此时圆柱侧面的电位移通量贡献为0,可以简化为:

\begin{} {\color{black} \Delta S\cdot D_{n2} - \Delta S\cdot D_{n1} = \Delta S\cdot \rho_{s}} \\\\ D_{n2}-D_{n1}=\rho_{s} \end{}

如果写成矢量形式,则为:

\widehat{n}\cdot (\overrightarrow{D_{2}}-\overrightarrow{D_{1}})=\rho_{s}

也就是:电位移矢量在边界上法向不连续,数值相差为分界面上的面电荷密度

磁感应强度

同样地,将磁通连续性方程的积分形式写出:

\oint _{S}\overrightarrow{B}\cdot d\overrightarrow{s}=0

同样由于侧面的磁通量贡献为0,可写出:

\begin{} {\color{black} \Delta S\cdot B_{n2} - \Delta S\cdot B_{n1} = 0} \\\\ B_{n2}-B_{n1}=0 \end{}

矢量形式则是:

\begin{} {\color{black} \widehat{n}\cdot (\overrightarrow{B_{2}}-\overrightarrow{B_{1}})=0}\\ \\\widehat{n}\cdot\overrightarrow{B_{2}}=\widehat{n}\cdot\overrightarrow{B_{1}} \end{}

也就是:磁感应强度在边界上法向连续

电场强度

分析图3.3的模型。

写出电磁感应定律的积分形式:

\oint _{C}\overrightarrow{E}\cdot d\overrightarrow{l}=-j\omega \int _{S}\overrightarrow{B}\cdot d\overrightarrow{s}-\int _{S}\overrightarrow{M}\cdot d\overrightarrow{s}

当回路垂直于分界面的宽边h->0的时候,回路的面积趋于0,所以第一项\overrightarrow{B}的曲面积分可以忽略不记。

对于\overrightarrow{M}的曲面积分,这里就有不同于《简明微波》所介绍的情况了。如果分界面存在磁流密度\overrightarrow{M_{S}},则\overrightarrow{M}的表面积分的贡献可能非0(有关这块我也不是很清楚,要涉及到狄拉克函数,可能是数理方程中的知识),最后得到的应该是:

\begin{} {\color{black} \Delta w\cdot E_{t2} - \Delta w\cdot E_{t1} = -\Delta w\cdot M_{S} }\\\\ E_{t2}-E_{t1}=-M_{S} \end{}

向量形式则是:

(\overrightarrow{E_{2}}-\overrightarrow{E_{1}})\times \widehat{n}=-\overrightarrow{M_{S}}

也就是:电场强度在边界上切向连续(不考虑磁流密度时)

磁场强度

安培环路定律的积分形式:

\oint _{C}\overrightarrow{H}\cdot d\overrightarrow{l}=j\omega \int _{S}\overrightarrow{D}\cdot d\overrightarrow{s}+\int _{S}\overrightarrow{J}\cdot d\overrightarrow{s}

同样的分析方法,可以得到:

\begin{} {\color{black} \Delta w\cdot H_{t2} - \Delta w\cdot H_{t1} = \Delta w\cdot J_{S} }\\\\ H_{t2}-H_{t1}=J_{S} \end{}

矢量形式则是:

\widehat{n}\times (\overrightarrow{E_{2}}-\overrightarrow{E_{1}})=\overrightarrow{J_{S}}

也就是:磁场强度在边界上切向不连续,数值相差为边界上的面电流密度


介质分界面的场

两种无耗介质分界面,通常没有电荷、电流密度、磁流密度,也就是:

\begin{} {\color{black} \rho_{S}=0}\\ J_{S}=0\\ M_{S}=0 \end{}

则边界条件可以简化为:

\begin{} {\color{black} \widehat{n}\cdot (\overrightarrow{D_{2}}-\overrightarrow{D_{1}})=0}\\ \\\widehat{n}\cdot (\overrightarrow{B_{2}}-\overrightarrow{B_{1}})=0\\\\ \widehat{n}\times (\overrightarrow{E_{2}}-\overrightarrow{E_{1}})=0\\ \\\widehat{n}\times (\overrightarrow{H_{2}}-\overrightarrow{H_{1}})=0 \end{}

穿过分界面时,D和B法向连续,E和H切向连续。

理想导体(电壁)分界面的场

对于良导体,常常假设是无耗的(σ->∞)。这种情况下,良导体内部区域所有场分量必定为0。

\begin{} {\color{black} \widehat{n}\cdot \overrightarrow{D}=\rho_{S}}\\\\\widehat{n}\cdot \overrightarrow{B_{}}=0\\\\ \widehat{n}\times \overrightarrow{E_{}}=0(-\overrightarrow{M})\\ \\\widehat{n}\times \overrightarrow{H_{}}=\overrightarrow{J_{S}} \end{}

同时,这也能说明为什么导体具有有限电导率,而不是门外汉认为的“导电性越好电导率就越大”。因为当电导率趋于无穷时,趋肤深度(微波功率可以穿透到达的深度)则趋于0

磁壁边界条件

是与电壁对偶的一种情况,其中\overrightarrow{H}切向分量必须为0。(这种边界条件实际不存在,但可以用波纹表面来近似,或者在某些平面传输线问题中用它来近似)

它的边界条件如下:

\begin{} {\color{black} \widehat{n}\cdot \overrightarrow{D}=0}\\\\\widehat{n}\cdot \overrightarrow{B_{}}=0\\\\ \widehat{n}\times \overrightarrow{E_{}}=-\overrightarrow{M}\\ \\\widehat{n}\times \overrightarrow{H_{}}=0 \end{}

辐射条件

处理一个或多个无限大边界的问题时,必须加上场在无限远处的条件。无限远的条件也是一种边界条件,被称为辐射条件,根本上是能量守恒的一种表述:

在无限远处,场要么为0,要么朝外传播。

只要一个无限大的媒质包含一个小的损耗因子,那么这个结果就很容易得到。来自无限远处又具有有限振幅的波将要求在无限远处有一个无限大的源,这是不可接受的(大概就是讲,有衰减则不可能使有限源传播无限远吧)。


那么本期就到此为止🌹

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值