读《微波工程(第三版)》笔记 (11:Smith圆图)(腰斩,就写了一点点)

Smith圆图是一种辅助图形,在求解传输线问题时非常有用。
除了Smith圆图,其实还有其他的阻抗和反射系数圆图,但Smith圆图的应用最为广泛。
Smith圆图将 无限( 0 − ∞ 0-\infty 0 的情况,通过归一化,集成在了一张有限圆图内,同时也将许多传输线的现象形象化,非常有助于学习以至未来的使用。


往期整理:
笔记:
 第一章:电磁理论
   0:介绍
   1:麦克斯韦方程组
   2:介质中的场
   3:介质中的边界条件
   4:波方程和基本平面波的解
   5:平面波的通解;补充
   6:电磁场能量(坡印廷定理)
   7:分界面上电磁波的反射(未实现)
   8:互易定理与镜像理论
 第二章:传输线理论
   9:传输线模型
   10:终端接负载的无耗传输线
   11:Smith圆图(腰斩)(本期)
例题:
   第一次



Smith圆图实例

在这里插入图片描述
(如果不加了解,这就是非常抽象的一张图。)


Smith圆图形成思想

其实,Smith圆图基本就是一个电压反射系数 Γ \Gamma Γ的极坐标图

它要能够概括这么多的东西:

Γ ( z ′ ) = Γ l e − j 2 β z ′ Z ( z ′ ) = Z 0 Z l + j Z 0 t a n ( β z ′ ) Z 0 + j Z l t a n ( β z ′ ) ρ = S W R = 1 + ∣ Γ ( z ′ ) ∣ 1 − ∣ Γ ( z ′ ) ∣ = 1 + ∣ Γ l ∣ 1 − ∣ Γ l ∣ \begin{aligned} &\Gamma(z^{'})=\Gamma_le^{-j2\beta z^{'}} \\ &Z(z^{'})=Z_0\frac{Z_l+jZ_0tan(\beta z^{'})}{Z_0+jZ_ltan(\beta z^{'})} \\ &\rho=SWR=\frac{1+|\Gamma(z^{'})|}{1-|\Gamma(z^{'})|}=\frac{1+|\Gamma_l|}{1-|\Gamma_l|} \end{aligned} Γ(z)=Γlej2βzZ(z)=Z0Z0+jZltan(βz)Zl+jZ0tan(βz)ρ=SWR=1∣Γ(z)1+∣Γ(z)=1Γl1+Γl

只需要基础的信息:

Z 0 , Z l , β Z_0,Z_l,\beta Z0,Zl,β

就可以在图中找到各个传输线参数。

Smith圆图的核心思想是:消去特征参数 Z 0 Z0 Z0,把 β β β归于 Γ Γ Γ的相位,工作参数 Γ Γ Γ为基地,套覆 Z ‾ ( z ′ ) \overline{Z}(z^{'}) Z(z) ρ ρ ρ

反射系数 Γ \Gamma Γ为基底

如果想要把传输线问题归于一个有限的图形,我们首先需要一个合适的基底,这个基底需要拥有坐标系类似地功能,所有传输线的参数都可以通过它来表征。好的备选方案就是上一节中所提及的传输线几大工作参数了:

  • 阻抗 Z Z Z
  • 反射系数 Γ \Gamma Γ
  • 驻波比 S W R SWR SWR

其中,阻抗变换公式有分式相除的形式,比较复杂。虽然阻抗具有四分之一变换性和二分之一周期性,但作为参考量还是比较不妥。

驻波比则是系统不变量,对于确定的传输线和负载,驻波比是定实数,无法反映传输线位置等参数的变化。

但是反射系数的特点: Γ ( z ′ ) = Γ l e − j 2 β z ′ = ∣ Γ l ∣ e j ( ϕ − 2 β z ′ ) \Gamma(z^{'})=\Gamma_le^{-j2\beta z^{'}}=|\Gamma_l|e^{j(\phi-2\beta z^{'})} Γ(z)=Γlej2βz=Γlej(ϕ2βz)就非常好。好在哪里?我来解释:
我们在学习复变函数的时候知道, e j ϕ e^{j\phi} ejϕ的形式可以理解成“旋转因子”,它的模始终是1,其内的 ϕ \phi ϕ可以理解成单位矢量对参考轴的夹角。而 Γ \Gamma Γ就可以理解成旋转矢量的模值。两者结合, ∣ Γ l ∣ e j ( ϕ − 2 β z ′ ) |\Gamma_l|e^{j(\phi-2\beta z^{'})} Γlej(ϕ2βz)随着离开传输线负载端的距离 z ′ z^{'} z变化的轨迹就是一个以原点 O O O为圆心,半径为 Γ l \Gamma_l Γl的圆形

考虑到 0 ≤ ∣ Γ ∣ ≤ 1 0\leq|\Gamma|\leq1 0∣Γ∣1,所以任何无源可实现的反射系数,都可以在一个半径为1的圆形内实现。这就为辅助图的有限性提供了可能。

圆图放在类似于 x o y xoy xoy坐标系的 Γ Γ Γ坐标系中,原先的 x x x轴现在是 Γ r Γ_r Γr轴,代表实部;原先的 y y y轴现在是 Γ i Γ_i Γi轴,代表虚部。

消去特征参数 Z 0 Z_0 Z0

决定驻波比 S W R SWR SWR 和反射系数模值 ∣ Γ ∣ |\Gamma| ∣Γ∣ (或者终端反射系数)的,是传输线特征阻抗 Z 0 Z_0 Z0和负载的阻抗 Z l Z_l Zl。当两个量确定以后,才能确定其他量(当然对于无耗传输线还有传输系数 β \beta β)。

但是如果两个量确定以后才能做出一张图(甚至因为 β \beta β需要确定三个量),那就太麻烦了。

所以就想出了“归一化(Normalizing)”的方法:

Z ‾ ( z ′ ) = Z ( z ′ ) Z 0 \overline{Z}(z^{'})=\frac{Z(z^{'})}{Z_0} Z(z)=Z0Z(z)

我们可以将传输线特征阻抗独立出来。这样,反射系数就可以这样表示:

Γ ( z ′ ) = Z ( z ′ ) − Z 0 Z ( z ′ ) + Z 0 = Z ‾ ( z ′ ) − 1 Z ‾ ( z ′ ) + 1 \Gamma(z^{'})=\frac{Z(z^{'})-Z_0}{Z(z^{'})+Z_0}=\frac{\overline{Z}(z^{'})-1}{\overline{Z}(z^{'})+1} Γ(z)=Z(z)+Z0Z(z)Z0=Z(z)+1Z(z)1

因为传输线的核心是反射,而反射的核心就是阻抗关系,这一关系是比值关系,所以满足相同阻抗比(相同的归一化负载阻抗)的传输线系统,他们的驻波比、传输系数模值、终端反射系数是一样的!

β β β归于 Γ Γ Γ的相位

最后还剩下传输系数 β \beta β

传输线的位置不使用距离远端的实际距离 z ′ z^{'} z来表示了,而是使用电角度 θ = β z ′ \theta=\beta z^{'} θ=βz

电角度就是 Γ Γ Γ相位的组成部分,它通过传输线的实际长度 z ′ z^{'} z和传输系数 β \beta β建立了联系。

Smith圆图的一种使用方式

说明一下上面解释的可行性。因为这是我自己的体悟,不是官方解释,而且我也不能保证读者能听明白,所以在这里演示一下:

  • 已知 Z 0 Z_0 Z0 Z l Z_l Zl后,通过归一化负载阻抗确定了终端反射系数 Γ l \Gamma_l Γl,就可以在单位圆图中找出对应的点,包括了半径和相位,在圆图中可以分解成实部和虚部。
  • 如果要找坐标在 z ′ z^{'} z点的反射系数。首先通过传输系数计算出电角度,正的电角度在公式 Γ ( z ′ ) = ∣ Γ l ∣ e j ( ϕ − 2 β z ′ ) \Gamma(z^{'})=|\Gamma_l|e^{j(\phi-2\beta z^{'})} Γ(z)=Γlej(ϕ2βz)中会导致顺时针旋转(口诀:源顺负逆,朝源靠近顺时针,朝夫在靠近逆时针),旋转的角度是两倍电角度。
  • 圆图中这个新的点就是传输线 z ′ z^{'} z点的反射系数了。

唉,感觉写着写着自己破防了:

  • 图不好做说起来麻烦;
  • Smith圆图这块要说自己的心得那实在是有点难写,才写完基本构成,发现还有比如阻抗导纳公式和圆的位置及变化、纯电阻线、纯电抗圆、匹配圆、阻抗圆图上半圆感性下班圆容性、以及匹配等等,唉,有点多,有点惰;
  • 这个也影响到了自己的读书速度,而且有时候自己明白了,还想着怎么再讲得简单易懂一些,又担心错误解读、过度解读导致曲解或者表错意。

Smith圆图这块是真有点不想记了。。。要不就这样吧


电阻圆、电抗圆

利用前面的归一化思想,可以写出负载反射系数:

Γ l = Z l ‾ − 1 Z l ‾ + 1 = ∣ Γ ∣ e j θ \Gamma_l=\frac{\overline{Z_l}-1}{\overline{Z_l}+1}=|\Gamma|e^{j\theta} Γl=Zl+1Zl1=∣Γ∣ejθ

反推出归一化负载阻抗用反射系数表示的公式:

Z l ‾ = 1 + ∣ Γ ∣ e j θ 1 − ∣ Γ ∣ e j θ \overline{Z_l}=\frac{1+|\Gamma|e^{j\theta}}{1-|\Gamma|e^{j\theta}} Zl=1∣Γ∣ejθ1+∣Γ∣ejθ

都用复数拆开表示:

r l + j x l = ( 1 + Γ r ) + j Γ i ( 1 − Γ r ) − j Γ i r_l+jx_l=\frac{(1+\Gamma_r)+j\Gamma_i}{(1-\Gamma_r)-j\Gamma_i} rl+jxl=(1Γr)jΓi(1+Γr)+jΓi

右侧上下同乘分母的的复共轭,可以将分母实数化,求出:

r l = 1 − Γ r 2 − Γ i 2 ( 1 − Γ r ) 2 + Γ i 2 r_l=\frac{1-\Gamma_r^2-\Gamma_i^2}{(1-\Gamma_r)^2+\Gamma_i^2} rl=(1Γr)2+Γi21Γr2Γi2 x l = 2 Γ i ( 1 − Γ r ) 2 + Γ i 2 x_l=\frac{2\Gamma_i}{(1-\Gamma_r)^2+\Gamma_i^2} xl=(1Γr)2+Γi22Γi

重新整理可以得到:

( Γ r − r l 1 + r l ) 2 + Γ i 2 = ( 1 1 + r l ) 2 (\Gamma_r-\frac{r_l}{1+r_l})^2+\Gamma_i^2=(\frac{1}{1+r_l})^2 (Γr1+rlrl)2+Γi2=(1+rl1)2 ( Γ r − 1 ) 2 + ( Γ i − 1 x l ) 2 = ( 1 x l ) 2 (\Gamma_r-1)^2+(\Gamma_i-\frac{1}{x_l})^2=(\frac{1}{x_l})^2 (Γr1)2+(Γixl1)2=(xl1)2

上面是电阻圆,下面是电抗圆,示意如图:
在这里插入图片描述
最后还有驻波比圆。注意驻波比是系统不变量,而且它的在圆图中对应的圆就和此时反射系数圆重合,只是尺度不同,希望读者不要搞混。
在这里插入图片描述


别的就先不想记了。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值