微波信号不可能只传输而不被使用、消耗。终端接消耗功率的元件,可以看成是一个负载
Z
l
Z_l
Zl。
上图描述了传输线端接负载模型,电磁波遇到负载以后将产生反射,波反射是此系统的一个基本特征。
往期整理:
笔记:
第一章:电磁理论
0:介绍
1:麦克斯韦方程组
2:介质中的场
3:介质中的边界条件
4:波方程和基本平面波的解
5:平面波的通解;补充
6:电磁场能量(坡印廷定理)
7:分界面上电磁波的反射(未实现)
8:互易定理与镜像理论
第二章:传输线理论
9:传输线模型
10:终端接负载的无耗传输线(本期)
例题:
第一次
端接负载无耗传输线参数
- (所有讨论都假定传输线的源端是匹配的,就没有来自源端的反射波形成多重干涉)
- (本节中 l = − z l=-z l=−z,基本等效于《简明微波》中的 z ′ = l − z z^{'}=l-z z′=l−z,但不包含“传输线源端到终端距离= l l l”的潜台词,主要用于表征任意位置)
反射系数( Γ \Gamma Γ)
终端反射系数( Γ l \Gamma_l Γl)
假定入射波
V
0
+
e
−
j
β
z
V_0^+e^{-j\beta z}
V0+e−jβz产生于
z
<
0
z<0
z<0的源(负载接在
z
=
0
z=0
z=0处)。若不接负载,则线上电压和电流的比值始终是特征阻抗
Z
0
Z_0
Z0,因此它保持行波状态。若接负载为
Z
l
Z_l
Zl,由于负载上要求电压电流比为
Z
l
Z_l
Zl,那么波行进到负载时,一定会有适当的波反射回去,以达到这一要求,同时在传输线上形成行驻波甚至是驻波。
此时,线上的总电压、总电流可以写成:
V ( z ) = V 0 + e − j β z + V 0 − e j β z (10.1a) V(z)=V_0^+e^{-j\beta z}+V_0^-e^{j\beta z}\tag{10.1a} V(z)=V0+e−jβz+V0−ejβz(10.1a) I ( z ) = V 0 + Z 0 e − j β z − V 0 − Z 0 e j β z (10.1b) I(z)=\frac{V_0^+}{Z_0}e^{-j\beta z}-\frac{V_0^-}{Z_0}e^{j\beta z}\tag{10.1b} I(z)=Z0V0+e−jβz−Z0V0−ejβz(10.1b)
式(10.1)已经满足了传输线上的电压电流比=特征阻抗关系,接下来还要满足负载上此关系:
Z l = V ( 0 ) I ( 0 ) = V 0 + + V 0 − V 0 + − V 0 − Z 0 (10.2) Z_l=\frac{V(0)}{I(0)}=\frac{V_0^++V_0^-}{V_0^+-V_0^-}Z_0\tag{10.2} Zl=I(0)V(0)=V0+−V0−V0++V0−Z0(10.2)
因此求得反射电压波和入射电压波的振幅关系:
V 0 − = Z l − Z 0 Z l + Z 0 V 0 + (10.3) V_0^-=\frac{Z_l-Z_0}{Z_l+Z_0}V_0^+\tag{10.3} V0−=Zl+Z0Zl−Z0V0+(10.3)
用入射波振幅来归一化反射波振幅,定义这一比值量为 (负载的)电压反射系数(也就是广义上的反射系数) Γ l \Gamma_l Γl:
Γ l = V 0 − V 0 + = Z l − Z 0 Z l + Z 0 (10.4) \Gamma_l=\frac{V_0^-}{V_0^+}=\frac{Z_l-Z_0}{Z_l+Z_0}\tag{10.4} Γl=V0+V0−=Zl+Z0Zl−Z0(10.4)
使用反射系数,可写出线上的总电压、电流为:
V ( z ) = V 0 + [ e − j β z + Γ l e j β z ] (10.5a) V(z)=V_0^+[e^{-j\beta z}+\Gamma_l e^{j\beta z}]\tag{10.5a} V(z)=V0+[e−jβz+Γlejβz](10.5a) I ( z ) = V 0 + Z 0 [ e − j β z − Γ l e j β z ] (10.5b) I(z)=\frac{V_0^+}{Z_0}[e^{-j\beta z}-\Gamma_l e^{j\beta z}]\tag{10.5b} I(z)=Z0V0+[e−jβz−Γlejβz](10.5b)
利用式(10.4),发现有一些特殊的情况,如:
- 当端接匹配负载,即
Z
l
=
Z
0
Z_l=Z_0
Zl=Z0 时,
Γ
l
=
0
\Gamma_l=0
Γl=0
此时传输线和负载上的电压电流比是相同的,所以从线上传来的行波无需经过反射就能满足条件,所以仍然是行波。 - 当端开路,即
Z
l
=
∞
Z_l=\infty
Zl=∞ 时,
Γ
l
=
1
\Gamma_l=1
Γl=1
电压波完全反射,在反射点,电压为振幅的2倍,电流为0。注意此时是驻波。 - 当端短路,即
Z
l
=
0
Z_l=0
Zl=0 时,
Γ
l
=
−
1
\Gamma_l=-1
Γl=−1
实际上是电流波完全反射,在反射点,电压为0,电流为振幅的2倍。注意此时是驻波。 - 当端接纯电抗性负载,即
Z
l
=
j
X
Z_l=jX
Zl=jX 时,
∣
Γ
l
∣
=
1
|\Gamma_l|=1
∣Γl∣=1,但相位不确定。
此时线上也是驻波,这一点将在之后提及驻波比时说明。纯电抗性负载时,线上的驻波波形可以用开路或短路波行移动得到(多用开路作为基准)。
任意位置反射系数( Γ ( z ) \Gamma(z) Γ(z))
根据式(10.4),如果将其推广至任意位置,则有:
Γ ( z ) = V 0 − ( z ) V 0 + ( z ) = V 0 − e j β z V 0 + e − j β z = Γ l e j 2 β z ⟹ l = − z Γ l e − j 2 β l (10.6) \Gamma(z)=\frac{V_0^-(z)}{V_0^+(z)}=\frac{V_0^-e^{j\beta z}}{V_0^+e^{-j\beta z}}=\Gamma_l e^{j2\beta z}\stackrel{l=-z}{\implies}\Gamma_l e^{-j2\beta l}\tag{10.6} Γ(z)=V0+(z)V0−(z)=V0+e−jβzV0−ejβz=Γlej2βz⟹l=−zΓle−j2βl(10.6)
其中,
l
=
−
z
l=-z
l=−z是从
z
=
0
z=0
z=0的负载处开始的正距离。
随着
l
l
l的增大,将越来越靠近源端。这代表了任意位置的反射系数都可以看成从源端出发经过相位变化的结果。更进一步地:
Γ ( z ) = Γ l e − j 2 β l = ∣ Γ l ∣ e j ϕ e − j 2 β l = ∣ Γ l ∣ e j ( ϕ − 2 β l ) (10.7) \Gamma(z)=\Gamma_l e^{-j2\beta l}=|\Gamma_l|e^{j\phi}e^{-j2\beta l}=|\Gamma_l|e^{j(\phi-2\beta l)}\tag{10.7} Γ(z)=Γle−j2βl=∣Γl∣ejϕe−j2βl=∣Γl∣ej(ϕ−2βl)(10.7) ∣ Γ ( z ) ∣ = ∣ ∣ Γ l ∣ e j ( ϕ − 2 β l ) ∣ = ∣ Γ l ∣ (10.8) |\Gamma(z)|=||\Gamma_l|e^{j(\phi-2\beta l)}|=|\Gamma_l|\tag{10.8} ∣Γ(z)∣=∣∣Γl∣ej(ϕ−2βl)∣=∣Γl∣(10.8)
其中
ϕ
\phi
ϕ为终端反射系数的相位。
式(10.7)跟进一步说明了传输线上,反射系数具有相位周期性,其周期为二分之一波长:
2 π 2 β = π λ 2 π = λ 2 (10.9) \frac{2\pi}{2\beta}=\frac{\pi\lambda}{2\pi}=\frac{\lambda}{2}\tag{10.9} 2β2π=2ππλ=2λ(10.9)
式(10.8)则表明,传输线上的反射系数具有模不变性。
功率(power)
对于线上 z z z处一点,它的时间平均功率流密度为:
P a v = 1 2 R e [ V ( z ) I ∗ ( z ) ] = 1 2 ∣ V 0 + ∣ 2 Z 0 R e [ 1 − Γ ∗ e − j 2 β z + Γ e j 2 β z − ∣ Γ ∣ 2 ] (10.10) P_{av}=\frac{1}{2}Re[V(z)I^*(z)]=\frac{1}{2}\frac{|V_0^+|^2}{Z_0}Re[1-\Gamma^*e^{-j2\beta z}+\Gamma e^{j2\beta z}-|\Gamma|^2]\tag{10.10} Pav=21Re[V(z)I∗(z)]=21Z0∣V0+∣2Re[1−Γ∗e−j2βz+Γej2βz−∣Γ∣2](10.10)
注意到式(10.10)可以简化:取实部运算里中间两项的结果为纯虚数,可以直接消去。最后得:
P a v = 1 2 ∣ V 0 + ∣ 2 Z 0 R e [ 1 − ∣ Γ ∣ 2 ] (10.11) P_{av}=\frac{1}{2}\frac{|V_0^+|^2}{Z_0}Re[1-|\Gamma|^2]\tag{10.11} Pav=21Z0∣V0+∣2Re[1−∣Γ∣2](10.11)
这表明:(端接负载且无耗)传输线上任意一点的平均功率流为常数,而传递到负载的功率为:入射功率( 1 2 ∣ V 0 + ∣ 2 Z 0 \frac{1}{2}\frac{|V_0^+|^2}{Z_0} 21Z0∣V0+∣2)-反射功率( 1 2 ∣ V 0 + ∣ 2 Z 0 ∣ Γ ∣ 2 \frac{1}{2}\frac{|V_0^+|^2}{Z_0}|\Gamma|^2 21Z0∣V0+∣2∣Γ∣2)。也可以发现,当端接匹配负载 Z l = Z 0 Z_l=Z_0 Zl=Z0时,负载功率最大,即为入射功率。
回波损耗(RL:Return Loss)
匹配时负载端无反射且吸收全部入射功率。但若负载失配(不匹配则失配),就会有回波(反射波),从而无法吸收全部的功率。
R L = − 20 log ∣ Γ ∣ ( d B ) (10.12) RL=-20\log|\Gamma|\;\;(dB)\tag{10.12} RL=−20log∣Γ∣(dB)(10.12)
- 对于匹配负载( Γ = 0 \Gamma=0 Γ=0), R L = ∞ RL=\infty RL=∞;
- 对于全反射负载( ∣ Γ ∣ = 1 |\Gamma|=1 ∣Γ∣=1), R L = 0 RL=0 RL=0。
注意:“回波损耗”中的“损耗”指的是“负载消耗”,所以反射波越小、负载吸收越多功率、回波损耗就应该越大!
驻波比(SWR:Standing Wave Ratio)
驻波比定义式
驻波比的定义为:驻波(或行驻波)上电压振幅最大值和电压振幅最小值的比值:
S W R = V m a x V m i n (10.13) SWR=\frac{V_{max}}{V_{min}}\tag{10.13} SWR=VminVmax(10.13)
式(10.13)还能有更加直观的表达。未得到更直观的表达,首先需要分析传输线上的电压模值:
∣ V ( z ) ∣ = ∣ V 0 + [ e − j β z + Γ e j β z ] ∣ = ∣ V 0 + ∣ ∣ e − j β z ∣ ∣ 1 + Γ e j 2 β z ∣ = ∣ V 0 + ∣ ∣ 1 + Γ e j 2 β z ∣ ⟹ l = − z ∣ V 0 + ∣ ∣ 1 + Γ e − j 2 β l ∣ ⟹ Γ = ∣ Γ ∣ e j ϕ ∣ V 0 + ∣ ∣ 1 + ∣ Γ ∣ e − j ( ϕ − 2 β l ) ∣ (10.14) \begin{aligned} |V(z)|&=|V_0^+[e^{-j\beta z}+\Gamma e^{j\beta z}]| \\ &=|V_0^+||e^{-j\beta z}||1+\Gamma e^{j2\beta z}| \\ &=|V_0^+||1+\Gamma e^{j2\beta z}| \\ &\stackrel{l=-z}{\implies} |V_0^+||1+\Gamma e^{-j2\beta l}|\\ &\stackrel{\Gamma=|\Gamma|e^{j\phi}}{\implies} |V_0^+||1+|\Gamma|e^{-j(\phi-2\beta l)}|\tag{10.14} \end{aligned} ∣V(z)∣=∣V0+[e−jβz+Γejβz]∣=∣V0+∣∣e−jβz∣∣1+Γej2βz∣=∣V0+∣∣1+Γej2βz∣⟹l=−z∣V0+∣∣1+Γe−j2βl∣⟹Γ=∣Γ∣ejϕ∣V0+∣∣1+∣Γ∣e−j(ϕ−2βl)∣(10.14)
其中
- l = − z l=-z l=−z是从 z = 0 z=0 z=0的负载处开始的正距离,随着 l l l的增大,将越来越靠近源端;
- ϕ \phi ϕ是反射系数 Γ \Gamma Γ的相位
式(10.14)中,仅旋转因子 e − j ( ϕ − 2 β l ) e^{-j(\phi-2\beta l)} e−j(ϕ−2βl) 是随坐标 l l l变化的。因此
- ϕ − 2 β l = 2 k π \phi-2\beta l=2k\pi ϕ−2βl=2kπ时, e − j ( ϕ − 2 β l ) = 1 e^{-j(\phi-2\beta l)}=1 e−j(ϕ−2βl)=1,电压振幅最大,为 ∣ V 0 + ∣ ( 1 + ∣ Γ ∣ ) |V_0^+|(1+|\Gamma|) ∣V0+∣(1+∣Γ∣);
- ϕ − 2 β l = 2 k π ± π \phi-2\beta l=2k\pi\pm\pi ϕ−2βl=2kπ±π时, e − j ( ϕ − 2 β l ) = − 1 e^{-j(\phi-2\beta l)}=-1 e−j(ϕ−2βl)=−1,电压振幅最小,为 ∣ V 0 + ∣ ( 1 − ∣ Γ ∣ ) |V_0^+|(1-|\Gamma|) ∣V0+∣(1−∣Γ∣);
因此,可以得到驻波比更具体的表达:
S W R = V m a x V m i n = 1 + ∣ Γ ∣ 1 − ∣ Γ ∣ (10.15) SWR=\frac{V_{max}}{V_{min}}=\frac{1+|\Gamma|}{1-|\Gamma|}\tag{10.15} SWR=VminVmax=1−∣Γ∣1+∣Γ∣(10.15)
驻波的两个距离
式(10.14)中还可以看出,两个连续的电压最大值(或最小值)之间的距离为
l = 2 π 2 β = π λ 2 π = λ 2 (10.16) l=\frac{2\pi}{2\beta}=\frac{\pi\lambda}{2\pi}=\frac{\lambda}{2}\tag{10.16} l=2β2π=2ππλ=2λ(10.16)
同时相邻两个最大值和最小值之间的距离则是:
d = π 2 β = λ 4 (10.17) d=\frac{\pi}{2\beta}=\frac{\lambda}{4}\tag{10.17} d=2βπ=4λ(10.17)
驻波比和反射系数的对应关系
驻波比的取值范围是 1 ≤ S W R ≤ ∞ 1\leq SWR\leq\infty 1≤SWR≤∞。它和反射系数的对应关系如下:
- 匹配: Γ = 0 \Gamma=0 Γ=0, S W R = 1 SWR=1 SWR=1,行波;
- 短路: Γ = − 1 \Gamma=-1 Γ=−1, S W R = ∞ SWR=\infty SWR=∞,驻波;
- 开路: Γ = 1 \Gamma=1 Γ=1, S W R = ∞ SWR=\infty SWR=∞,驻波;
- 纯抗: ∣ Γ ∣ = 1 |\Gamma|=1 ∣Γ∣=1, S W R = ∞ SWR=\infty SWR=∞,驻波;
- 任意负载: 0 ≤ Γ ≤ 1 0\leq\Gamma\leq1 0≤Γ≤1, 1 ≤ S W R ≤ ∞ 1\leq SWR\leq\infty 1≤SWR≤∞,行驻波。
阻抗( Z Z Z)
既然传输线上的电压电流随时间变化,那么,阻抗也一定是随时间变化的量。
在任意位置上的阻抗
Z
(
l
)
=
Z
(
−
z
)
Z(l)=Z(-z)
Z(l)=Z(−z)可以表示为:
Z ( l ) = V ( l ) I ( l ) = V 0 + [ e j β l + Γ e − j β l ] V 0 + [ e j β l − Γ e − j β l ] Z 0 = 1 + Γ e − j 2 β l 1 − Γ e − j 2 β l Z 0 (10.18) Z(l)=\frac{V(l)}{I(l)}=\frac{V_0^+[e^{j\beta l+\Gamma e^{-j\beta l}}]}{V_0^+[e^{j\beta l-\Gamma e^{-j\beta l}}]}Z_0=\frac{1+\Gamma e^{-j2\beta l}}{1-\Gamma e^{-j2\beta l}}Z_0\tag{10.18} Z(l)=I(l)V(l)=V0+[ejβl−Γe−jβl]V0+[ejβl+Γe−jβl]Z0=1−Γe−j2βl1+Γe−j2βlZ0(10.18)
式(10.18)可以这样变形:
Z ( l ) = 1 + Γ e − j 2 β l 1 − Γ e − j 2 β l Z 0 = Z 0 ( Z l + Z 0 ) e j β l + ( Z l − Z 0 ) e − j β l ( Z l + Z 0 ) e j β l − ( Z l − Z 0 ) e − j β l = Z 0 Z l c o s ( β l ) + j Z 0 s i n ( β l ) Z 0 c o s ( β l ) + j Z l s i n ( β l ) = Z 0 Z l + j Z 0 t a n ( β l ) Z 0 + j Z l t a n ( β l ) (10.19) \begin{aligned} Z(l)=\frac{1+\Gamma e^{-j2\beta l}}{1-\Gamma e^{-j2\beta l}}Z_0&=Z_0\frac{(Z_l+Z_0)e^{j\beta l}+(Z_l-Z_0)e^{-j\beta l}}{(Z_l+Z_0)e^{j\beta l}-(Z_l-Z_0)e^{-j\beta l}}\\&=Z_0\frac{Z_lcos(\beta l)+jZ_0sin(\beta l)}{Z_0cos(\beta l)+jZ_lsin(\beta l)}\\&=Z_0\frac{Z_l+jZ_0tan(\beta l)}{Z_0+jZ_ltan(\beta l)}\tag{10.19} \end{aligned} Z(l)=1−Γe−j2βl1+Γe−j2βlZ0=Z0(Zl+Z0)ejβl−(Zl−Z0)e−jβl(Zl+Z0)ejβl+(Zl−Z0)e−jβl=Z0Z0cos(βl)+jZlsin(βl)Zlcos(βl)+jZ0sin(βl)=Z0Z0+jZltan(βl)Zl+jZ0tan(βl)(10.19)
式(10.19)就是传输线阻抗方程。它给出了具有任意负载阻抗的一段传输线上任意一点的阻抗。
对于不同负载情况,阻抗可以简化,分别为:
- 匹配: Z l = Z 0 Z_l=Z_0 Zl=Z0, Z ( l ) = Z 0 Z(l)=Z_0 Z(l)=Z0;
- 短路: Z l = 0 Z_l=0 Zl=0, Z ( l ) = j Z 0 t a n ( β l ) Z(l)=jZ_0tan(\beta l) Z(l)=jZ0tan(βl);
- 开路: Z l = ∞ Z_l=\infty Zl=∞, Z ( l ) = − j Z 0 c o t ( β l ) Z(l)=-jZ_0cot(\beta l) Z(l)=−jZ0cot(βl);
- 任意负载:就是公式所写。
三个工作参数的关系( Z , Γ , S W R Z,\Gamma,SWR Z,Γ,SWR)
传输线上,阻抗、反射系数、驻波比,被称为三大工作参数。
他们的关系是:
Γ ( l ) = Z ( l ) − Z 0 Z ( l ) + Z 0 Γ ( l ) = Γ l e − j 2 β l Z ( l ) = Z 0 1 + Γ ( l ) 1 − Γ ( l ) Z ( l ) = Z 0 Z l + j Z 0 t a n ( β l ) Z 0 + j Z l t a n ( β l ) ρ = S W R = 1 + ∣ Γ ( l ) ∣ 1 − ∣ Γ ( l ) ∣ = 1 + ∣ Γ l ∣ 1 − ∣ Γ l ∣ (10.20) \begin{aligned} &\Gamma(l)=\frac{Z(l)-Z_0}{Z(l)+Z_0} \\ &\Gamma(l)=\Gamma_le^{-j2\beta l} \\ &Z(l)=Z_0\frac{1+\Gamma(l)}{1-\Gamma(l)} \\ &Z(l)=Z_0\frac{Z_l+jZ_0tan(\beta l)}{Z_0+jZ_ltan(\beta l)} \\ &\rho=SWR=\frac{1+|\Gamma(l)|}{1-|\Gamma(l)|}=\frac{1+|\Gamma_l|}{1-|\Gamma_l|} \end{aligned}\tag{10.20} Γ(l)=Z(l)+Z0Z(l)−Z0Γ(l)=Γle−j2βlZ(l)=Z01−Γ(l)1+Γ(l)Z(l)=Z0Z0+jZltan(βl)Zl+jZ0tan(βl)ρ=SWR=1−∣Γ(l)∣1+∣Γ(l)∣=1−∣Γl∣1+∣Γl∣(10.20)
重申一遍,此处 l l l 代表任意位置,而不是源端!(主要我懒得改了)
特定长度传输线的作用
二分之一波长( l = λ 2 l=\frac{\lambda}{2} l=2λ)传输线
式(10.20)中的第二个式子,第四个式子可以得到:
- 反射系数 Γ \Gamma Γ 具有二分之一波长周期性;
- 阻抗 Z Z Z 具有二分之一波长周期性;
也就是说,多接一段半波长传输线,不会改变阻抗和反射系数,无论该传输线特征阻抗是多少!
四分之一波长( l = λ 4 l=\frac{\lambda}{4} l=4λ)传输线
式(10.20)中的第四个式子,可以看到:
Z ( l + λ 4 ) = Z 0 2 Z ( l ) Z(l+\frac{\lambda}{4})=\frac{Z_0^2}{Z(l)} Z(l+4λ)=Z(l)Z02
这种关系被称为阻抗的四分之一波长变换性。