拉格朗日方程的物理意义

拉格朗日方程,是研究机器人机械臂动力学不得不学会的基础知识。

首先说明一下,我不是学理论力学的,所以就不来搞公式推导了,工科生,最重要的是理解这个公式,会拿来用,就谢天谢地啦。我也不是老师,语言组织可能不好,希望你能看得懂,看不懂可以私信我。

我看到网上好像没有人说这个东西的物理意义,一上来就搞一个矩阵,再搞个偏微分,再公式推来推去,吓死个人,对初学者蛮不友好的。

因为在工作时候接触这个东西比较多,今天突发奇想,想试着解释一下拉格朗日方程的物理意义,让高中毕业的同志们也能看懂,只要你懂了物理意义,再多的矩阵,再多的微积分,偏微分,都乃浮云也!记住,工科生,一定要理解一个系统的物理意义,哪怕你学得再慢(当然不能太慢了,这个“积分”还是要限幅一下),因为一旦弄懂,后面就会非常顺利。

比如说一个系统,系统中有n个元素,n个元素的值和变化率共同影响这个系统如何运行。这个系统会运动,n个元素会产生两个子系统,这两个子系统分别是:1、释放能量的系统 2、储存能量的系统。动能 就是释放能量的子系统的描述,势能 就是储存能量的子系统的描述。

我们现在需要一个罐子,这个罐子要把整个系统的元素以及元素直接的关系映射全部装进去,然后有了这个罐子后,我们可以很容易无限制得的再造一个一模一样的系统出来。

为了获得这个系统的元素与元素直接的关系,我们只需要把两个子系统相加起来就行了。

但是我们别忘了,动能子系统和势能子系统,天生符号相反(动能会转化为势能),如果直接相加,有可能等于0或者其他常数了,直接终止接下来的计算。所以我们需要相减。

就有了这个公式:

简单得来说,这个公式,描述了整个系统。只要两个系统A和B,这个公式一样,我们就可能说他们是一模一样的系统。

然后来到了另外一个公式:

其中一项是位移影响的力(需要再除一个时间dt),一项是速度影响的力,如果是无外力,值为0,如果有外力,值就是外力的大小。

所以综合来讲,拉格朗日方程,直接将这个系统中的元素和元素之间的关系弄成一个大杂烩,不再纠结于其中的细节,然后得出一个结果。这么来看真的有点像经典控制论里面的传递函数了。。。。。。

我的这个观点,专业的人看着肯定嗤之以鼻(不过我觉得所有的理论物理的公式,归根结底都是用一个公式,把一个系统中的各个元素及其之间的关系表示出来),但是我作为搞机器人的工程师,我用着很爽就够了,如果你看不懂,就加我聊聊。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值