【AI大模型】知识图谱嵌入在医疗领域的应用

在医疗领域中,海量的医疗数据充斥着各种疾病、治疗方案、药物使用、临床诊断等丰富的信息。这些数据通常以非结构化形式存在于病历、影像、实验室报告等文档中。因此,如何有效地挖掘这些数据并进行推理是医学领域的一个重要研究方向。知识图谱作为一种能展示实体及其间关系的结构化图模型,在医疗领域的应用逐渐成为趋势。知识图谱嵌入技术(Knowledge Graph Embeddings,KGE)旨在将图中实体和关系编码为低维向量,允许我们使用向量空间中的计算来推断出实体之间的隐藏关系。

知识图谱嵌入在医疗领域的应用已经取得了初步的成功,例如药物副作用的预测、新药物的发现、疾病诊断的优化等。通过将药物、疾病、症状等医疗实体嵌入到向量空间中,可以通过对实体之间距离的测量来推测潜在的关系,从而为医生提供辅助决策支持。


知识图谱嵌入的基本概念

知识图谱嵌入的目标是将知识图谱中的实体和关系映射为低维的向量表示,使得这些嵌入向量能够保持原图中的语义信息。通过这种方式,复杂的图结构可以转换为在向量空间中进行的简单操作,进而通过向量运算来实现知识的推理和扩展。

  1. 实体 (Entities):图中的节点,代表知识图谱中的概念或对象,如在医疗领域中,“疾病”、“药物”、"症状"等。
  2. 关系 (Relations):连接实体的边,代表实体之间的关系或交互作用,如"治疗"、“引发”、"缓解"等。
  3. 嵌入 (Embeddings):将实体和关系转化为向量表示,通过向量计算来推断新的关系。

知识图谱嵌入的常用方法包括TransE、TransH、DistMult、ComplEx等。本文将重点介绍如何在医疗领域应用TransE模型来完成疾病和药物之间关系的推理。


知识图谱嵌入技术在医疗领域的应用

在医疗领域,知识图谱嵌入技术可以帮助解决以下几个问题:

|
医疗应用场景

|

描述

|
| — | — |
|

药物发现

|

通过预测药物与疾病、症状的潜在关系,发现新药物或药物的潜在应用。

|
|

药物副作用预测

|

通过分析药物与其他实体的关系,预测可能出现的药物副作用。

|
|

疾病诊断支持

|

通过识别疾病与症状、基因、环境因素之间的联系,辅助疾病的早期诊断。

|
|

个性化治疗方案推荐

|

通过综合分析患者的病史、遗传信息、药物反应等因素,推荐个性化治疗方案。

|
|

医学文献挖掘

|

利用知识图谱挖掘海量医学文献中的潜在知识,帮助研究人员更好地理解疾病。

|

我们将重点展示如何使用知识图谱嵌入技术进行疾病诊断支持和药物副作用预测。


实例分析:医疗知识图谱的构建与嵌入

我们将构建一个简单的医疗知识图谱,包含以下几个实体和关系:

  • 实体:疾病(Disease)、药物(Drug)、症状(Symptom)、基因(Gene)
  • 关系:治疗(treats)、引发(causes)、缓解(relieves)、影响(affects)

1 数据准备

我们需要构建一个医疗知识图谱的数据集。为了简化问题,我们采用以下格式来表示知识三元组:

|
头实体 (Head Entity)

|

关系 (Relation)

|

尾实体 (Tail Entity)

|
| — | — | — |
|

Disease A

|

causes

|

Symptom A

|
|

Drug A

|

relieves

|

Symptom A

|
|

Disease B

|

treats

|

Drug B

|
|

Gene A

|

affects

|

Disease A

|

这些三元组表示了实体间的关系,例如,“Disease A” 引发了 “Symptom A”,“Drug A” 可以缓解 “Symptom A”,“Gene A” 影响了 “Disease A”。

2 知识图谱嵌入模型构建

我们选择使用经典的TransE模型来实现嵌入。在TransE模型中,实体和关系都嵌入到同一向量空间中,且要求头实体向量与关系向量之和接近尾实体向量,即:

h + r \approx t

TransE的目标是通过最小化以下损失函数来学习实体和关系的向量表示:

L = \sum_{(h, r, t) \in S} \sum_{(h’, r, t’) \in S’} \left[ \gamma + d(h + r, t) - d(h’ + r, t’) \right]_+

其中, d(x, y) 表示向量 x 和 y 之间的距离, \gamma 是间隔超参数, S 是正确的三元组集合, S’ 是负采样得到的错误三元组集合。

代码语言:python

代码运行次数:0

Cloud Studio 代码运行

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

# 初始化实体和关系的数量
n_entities = 6  # 假设我们有6个实体
n_relations = 4  # 假设有4种关系
embedding_dim = 100  # 嵌入维度

# 定义TransE模型
class TransE(nn.Module):
    def __init__(self, n_entities, n_relations, embedding_dim, margin=1.0):
        super(TransE, self).__init__()
        self.entity_embeddings = nn.Embedding(n_entities, embedding_dim)
        self.relation_embeddings = nn.Embedding(n_relations, embedding_dim)
        self.margin = margin
        self.loss = nn.MarginRankingLoss(margin=margin)
        
        # 初始化嵌入参数
        nn.init.xavier_uniform_(self.entity_embeddings.weight)
        nn.init.xavier_uniform_(self.relation_embeddings.weight)
    
    def forward(self, head, relation, tail):
        head_emb = self.entity_embeddings(head)
        relation_emb = self.relation_embeddings(relation)
        tail_emb = self.entity_embeddings(tail)
        score = torch.norm(head_emb + relation_emb - tail_emb, p=1, dim=1)
        return score

    def loss_fn(self, pos_score, neg_score):
        target = -torch.ones(pos_score.size())
        return self.loss(pos_score, neg_score, target)

# 构建样本数据
data = {
    "entities": ["Disease A", "Symptom A", "Drug A", "Disease B", "Drug B", "Gene A"],
    "relations": ["causes", "relieves", "treats", "affects"],
    "triples": [
        (0, 0, 1),  # Disease A causes Symptom A
        (2, 1, 1),  # Drug A relieves Symptom A
        (3, 2, 4),  # Disease B treats Drug B
        (5, 3, 0)   # Gene A affects Disease A
    ]
}

# 创建模型并定义优化器
model = TransE(n_entities, n_relations, embedding_dim)
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
def train(model, data, epochs=100):
    for epoch in range(epochs):
        model.train()
        
        total_loss = 0
        for triple in data['triples']:
            # 正样本 (h, r, t)
            head, relation, tail = torch.LongTensor([triple[0]]), torch.LongTensor([triple[1]]), torch.LongTensor([triple[2]])
            pos_score = model(head, relation, tail)
            
            # 负采样生成负样本 (h', r, t')
            neg_tail = torch.LongTensor([np.random.randint(0, n_entities)])
            neg_score = model(head, relation, neg_tail)
            
            # 计算损失
            loss = model.loss_fn(pos_score, neg_score)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
        
        if (epoch + 1) % 10 == 0:
            print(f"Epoch {epoch+1}/{

epochs}, Loss: {total_loss}")

# 开始训练
train(model, data)

数据扩展与优化

在实际医疗场景中,知识图谱中的数据非常庞大且复杂。我们可以引入更多的实体和关系,涵盖更广泛的疾病、药物和症状信息。对于模型的优化,使用更复杂的嵌入模型如ComplEx、RotatE等可能会进一步提高预测效果。此外,结合图神经网络(Graph Neural Network, GNN)的知识图谱嵌入方法也被广泛应用于医疗领域,以捕捉更多的图结构信息。

实际应用

知识图谱嵌入在实际的医疗应用中,通常与其他技术结合使用,例如自然语言处理(NLP)技术用于医疗文档的实体识别和关系抽取,深度学习模型用于预测和推理潜在的关系。通过这些技术的结合,可以构建更智能的医疗决策支持系统,为医生提供准确的诊断建议和个性化治疗方案。

知识图谱嵌入技术在医疗领域具有广阔的应用前景。通过对大量医疗数据进行结构化处理和嵌入,可以大大提高医疗知识的表达和推理能力,从而促进疾病诊断、药物发现等领域的发展。本博客展示了如何通过构建一个简单的医疗知识图谱,并使用TransE模型对其进行嵌入的过程。未来的工作将致力于更加复杂的模型构建和与实际临床数据的结合。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值