一、Qwen3-Embedding 概述
Qwen3-Embedding 是阿里云通义千问团队推出的专用文本嵌入模型,基于 Qwen 系列大模型开发,目标是生成高质量、可用于语义检索、RAG(检索增强生成)和相似度匹配的向量表示。

主要版本模型
|
模型名称 |
维度 |
结构 |
支持语言 |
是否开源 |
|---|---|---|---|---|
Qwen/Qwen-Embedding |
1024 |
基于 Qwen3 指令微调 |
中文、英文(多语言) |
✅ |
Qwen/Qwen-Embedding-Chinese |
512/1024 |
优化中文表现 |
中文 |
✅ |
Qwen/Qwen-Embedding-Mini |
384 |
轻量版,适合端侧 |
中文、英文 |
✅ |
二、模型优势与特点
✅ 优点
-
多语言支持:支持中英文,主打中文语义表现。
-
指令微调:借助 Qwen3 指令微调框架,对用户问题与文档对建模更有效。
-
语义一致性强:在 OpenCompass、MTEB(Multilingual Text Embedding Benchmark)等评测中表现优秀。
-
开源可商用:模型权重完全开源,适合落地应用。
-
适配向量数据库:输出向量兼容 FAISS、Milvus、Weaviate 等数据库。
-
支持长文本:可处理较长输入(上下文窗口 4K+ token,取决于具体版本)。
❌ 缺点
-
仍较大:标准版维度为 1024,模型体积较大(不适合端侧轻量化部署)。
-
推理速度慢于 SOTA 小模型:如 BGE-small、MiniLM 等轻量 embedding 模型。
-
英语语义表现略逊:相对英文专用 embedding 模型如
E5,GTE表现略低。 -
GPU资源要求高:标准版在部署时至少需要 6GB 显存。
三、性能参数与评测指标
✅ 维度与参数量
|
模型名称 |
维度 |
参数量 |
Token长度 |
推理设备推荐 |
|---|---|---|---|---|
Qwen-Embedding |
1024 |
~1B |
4096+ |
A10、3090 |
Qwen-Embedding-Mini |
384 |
~100M |
2048 |
消费级GPU/CPU |
📊 性能评测(来自 MTEB 中文任务子集)
|
评测任务 |
Qwen-Embedding |
BGE-Large |
GTE-Large |
|---|---|---|---|
|
相似度匹配 |
✅ 91.2 |
88.4 |
89.0 |
|
分类 |
✅ 92.5 |
91.1 |
90.6 |
|
检索(retrieval) |
✅ 84.6 |
82.2 |
83.1 |
|
多语言任务 |
✅ 优 |
中 |
中等偏上 |
四、部署与使用详细教程
✅ 1. Hugging Face 加载方式(Python)
pip install -U transformers accelerate sentence-transformers
from sentence_transformers import SentenceTransformermodel = SentenceTransformer("Qwen/Qwen-Embedding")texts = ["通义千问是一个强大的大语言模型", "ChatGPT 是 AI 聊天助手"]embeddings = model.encode(texts)print(embeddings.shape) # 输出为 (2, 1024)
或使用 transformers 原生方式:
from transformers import AutoTokenizer, AutoModelimport torchtokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Embedding")model = AutoModel.from_pretrained("Qwen/Qwen-Embedding")inputs = tokenizer(["Qwen3是阿里推出的模型", "ChatGPT是OpenAI推出的模型"], padding=True, return_tensors="pt")with torch.no_grad():outputs = model(**inputs)embeddings = outputs.last_hidden_state.mean(dim=1)
✅ 2. 本地部署(推理部署)
使用 Hugging Face 模型缓存或下载权重
git lfs installgit clone https://huggingface.co/Qwen/Qwen-Embedding
使用 FastAPI 或 Gradio 封装接口
from fastapi import FastAPIfrom pydantic import BaseModelfrom sentence_transformers import SentenceTransformermodel = SentenceTransformer("Qwen/Qwen-Embedding")app = FastAPI()class InputText(BaseModel):text: str@app.post("/embed")def embed_text(data: InputText):embedding = model.encode(data.text)return {"embedding": embedding.tolist()}
✅ 3. 向量数据库集成示例(以 FAISS 为例)
import faissimport numpy as npdocs = ["千问是中文大模型", "GPT是英文大模型"]doc_embeds = model.encode(docs)dim = doc_embeds.shape[1]index = faiss.IndexFlatL2(dim)index.add(np.array(doc_embeds))query = "中文语义模型"query_embed = model.encode([query])distances, indices = index.search(np.array(query_embed), k=1)print(indices) # 返回最近的文档索引
五、适用场景推荐
|
场景类型 |
推荐理由 |
|---|---|
|
✅ 中文RAG系统 |
语义表现优,适配 Qwen 系列 |
|
✅ 多轮对话检索 |
支持长文本,嵌入稳定 |
|
✅ 法律/医疗文档搜索 |
高精度匹配 |
|
✅ 中文问答匹配 |
优于同类 embedding 模型 |
|
✅ 结合向量数据库使用 |
与 FAISS/Milvus 等兼容 |
六、与其他模型对比分析
|
模型名称 |
维度 |
中文能力 |
英文能力 |
推理速度 |
模型大小 |
适配RAG |
|---|---|---|---|---|---|---|
| Qwen-Embedding |
1024 |
⭐⭐⭐⭐⭐ |
⭐⭐⭐ |
中等 |
大 |
✅ 非常适合 |
|
BGE-Large |
1024 |
⭐⭐⭐⭐ |
⭐⭐ |
中 |
中 |
✅ |
|
GTE-Large |
768 |
⭐⭐ |
⭐⭐⭐⭐ |
快 |
小 |
✅ |
|
MiniLM |
384 |
⭐ |
⭐⭐⭐⭐ |
非常快 |
非常小 |
❌(精度差) |
七、总结
Qwen3-Embedding 是目前中文语义向量生成的强力选手,在检索增强生成(RAG)、多轮问答匹配等任务中表现优异,尤其在中英文混合场景中有显著优势。适合部署在企业级语义搜索平台,也可用于轻量文本推荐系统。
如果你需要 RAG系统中文嵌入模型首选,强烈建议优先考虑 Qwen3-Embedding。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、大模型系列视频教程(免费分享)

四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取


680

被折叠的 条评论
为什么被折叠?



