深度学习常见概念解释(一)—— 梯度消失和爆炸


因为最近在研究深度学习相关的内容,经常会看到一些常见的概念和定义,但是一直没能彻底理解,在该系列笔记里整理一下:

梯度消失

定义

梯度消失问题(Vanishing Gradient Problem)是神经网络,尤其是深层神经网络在训练过程中常见的一个问题。它指的是在神经网络的训练过程中,当误差梯度(gradient)被反向传播回网络的输入层时,梯度的值变得非常小,甚至接近于零,导致网络权重的更新非常缓慢或者几乎不更新,这使得网络很难继续学习或者完全无法收敛到一个好的解。

原因

梯度消失通常发生在使用传统的激活函数(如Sigmoid或Tanh)的深度网络中。这些激活函数的导数在输入值较大或较小时都非常接近于零。例如,Sigmoid函数的输出范围是(0,1),其导数最大值为0.25,而当输入值远离零点时,导数迅速趋近于零。在深层网络中,这些小的梯度值被连乘,导致梯度在到达输入层时已经几乎为零。Sigmoid函数,Tanh函数公式,图像,还有它们分别的导数图像如下图一,二,三所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

影响

梯度消失使得网络的训练变得非常困难:

  1. 网络层数越深,问题越严重:在深层网络中,由于梯度必须通过多个层反向传播,每通过一层,梯度都有可能变得更小,最终导致梯度消失。
  2. 训练时间延长:由于梯度非常小,权重的更新非常缓慢,这意味着网络需要更多的时间来学习或者根本学习不到有效的特征。
  3. 影响模型性能:梯度消失可能导致网络学习停滞,无法达到一个好的性能水平。

应对策略

为了解决或缓解梯度消失的问题,研究者们提出了多种策略:

  • 使用ReLU及其变种:ReLU(Rectified Linear Unit)激活函数及其变种(如Leaky ReLU等)成为了现代神经网络的标准,因为它们在正数部分的导数为常数(通常为1),这有助于缓解梯度消失问题。
  • 使用Batch Normalization:Batch Normalization可以帮助规范化每层的输出,确保网络各层激活值分布的一致性,从而有助于梯度的稳定流动。
  • 改进网络架构:例如,使用残差网络(ResNet)结构,通过引入跳过连接(skip connections)允许梯度直接流动,这可以有效地避免梯度消失问题。
  • 适当的参数初始化:如He初始化或Xavier初始化,这些初始化方法考虑了输入和输出的尺寸,以确保在训练初期激活值和梯度保持在适当的范围。
    在这里插入图片描述

梯度爆炸

梯度消失是深度学习模型设计和训练中需要关注的重要问题,合理选择激活函数、网络架构和训练技巧是缓解这一问题的关键。

定义

梯度爆炸问题(Exploding Gradient Problem)与梯度消失问题相对,是另一个在训练深度神经网络时常遇到的难题,特别是在训练循环神经网络(RNN)和其他深度模型时更为明显。梯度爆炸指的是在网络训练过程中,梯度的大小急剧增加,其值变得非常大,以至于导致数值计算上的不稳定,这通常会导致模型训练失败,表现为模型参数更新后变得非常大,最终可能导致模型的权重变为NaN(不是一个数字)。

原因

梯度爆炸通常出现在网络较深,且使用了链式法则进行反向传播时。在这种情况下,如果**梯度的值较大(尤其是大于1),那么这些梯度值会在反向传播过程中累乘,导致最终的梯度值指数级增长。**这种现象尤其在使用如传统RNN这类对历史信息敏感的网络结构中更为常见,因为它们在时间序列数据的处理中,需要通过多个时间步长反向传播误差。

影响

梯度爆炸会导致几个问题:

  1. 训练不稳定:模型训练时参数更新过大,使得模型无法收敛到一个好的解。
  2. 数值溢出:极大的参数更新可能导致数值溢出,表现为NaN或无限大(Inf)的数值,这会使得模型完全无法训练。
  3. 损失函数发散:如果梯度爆炸严重,损失函数可能会迅速增大,而不是减小。

应对策略

针对梯度爆炸,可以采取以下一些策略来控制或缓解其影响:

  • 梯度裁剪(Gradient Clipping):这是处理梯度爆炸最常用的技术之一。梯度裁剪通过设定一个阈值,将梯度的大小限制在这个阈值以内。这确保了在训练过程中梯度不会超过设定的最大值,从而避免了大幅更新权重。
  • 改变网络结构:使用一些设计来防止梯度爆炸的网络结构,比如长短期记忆网络(LSTM)或门控循环单元(GRU),它们通过引入门控机制来控制信息的流动,可以有效缓解梯度爆炸问题。
  • 适当的权重初始化:使用恰当的方法初始化网络权重也可以帮助缓解梯度爆炸问题。例如,使用较小的初始权重值可以减少在训练初期梯度过大的风险。
  • 使用批量归一化(Batch Normalization):虽然批量归一化主要是为了解决梯度消失问题,但它通过规范化中间层的激活也可以帮助控制梯度的规模,从而间接地减少梯度爆炸的风险。

通过这些方法,可以有效控制训练过程中的梯度大小,从而使深度学习模型更稳定地收敛,提高模型的训练效果和可用性。

总结

在深度神经网络中,梯度具有不稳定性;它们可能在接近输入层的隐藏层中消失或者爆炸。这种不稳定性是深度神经网络中基于梯度学习面临的根本挑战。其根本原因是前面层的梯度是后面层梯度的乘积。当网络层数过多时,就会出现梯度不稳定的情况,例如梯度消失和爆炸。

梯度消失和爆炸产生的共同原因是深度学习网络层数过多,采用了不合适的激活函数和初始权重。改善网络结构,增加Batch Normalization,使用合适的权重和激活函数可以大大减少这类问题的出现。

因为关于梯度的问题必定涉及到前向传播和反向传播的内容,该部分内容在后面也会更新。

  • 35
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值