YOLO系列笔记(四)——YOLO v3介绍

YOLO系列笔记(四)—— YOLO v3

YOLO v3

YOLO v3 是 YOLO 系列中的一种先进的实时目标检测网络,它在效率和速度方面相较于其前身有显著提升。此版本特别优化了网络结构,以改善小目标的检测能力,综合利用多尺度特征图信息以预测不同大小的物体。它采用了丰富的先验框设计,每个尺度提供三种不同规格,共计九种先验框。
在这里插入图片描述

特点

  • 改进的网络结构: YOLO v3 对网络结构进行了优化,特别是为了提高对小型目标的检测性能。
  • 细化的特征提取: 通过融合多个尺度的特征图来预测各种尺寸的物体,增强了模型的泛化能力。
  • 丰富的先验框: 提供三种尺度,每种尺度包括三个规格的先验框,共九种,以适应不同大小物体的检测。
  • 多标签预测: 利用 softmax 层的改进进行多标签任务的预测,采用 logistic 激活函数以预测每个类别的存在与否。
    在这里插入图片描述
  • 多尺度检测: 设计了三个不同的尺度,使网络能够捕捉到不同大小的物体。
    在这里插入图片描述

核心网络架构

  • 无池化和全连接层: 全部采用卷积层,以保持空间特征的丰富性。
    在这里插入图片描述
  • 下采样: 通过将 stride 设为 2 来实现,而不是采用传统的池化操作。
    在这里插入图片描述- 残差连接: 借鉴了 ResNet 的设计,通过堆叠更多的层来提升特征提取效率,并采用残差连接以避免训练过程中的梯度消失问题(残差网络结构见下图左一,单纯的VGG网络层数叠加并不能提升运行速度和准确性,见图右一、二:不采用残差网络的话,层数越多,训练和测试的误差越高)。
    在这里插入图片描述
  • 图像金字塔: 利用不同的特征图进行融合后预测,以实现对物体尺寸的敏感性。
    在这里插入图片描述

先验框设计

YOLO3共有9中先验框,比YOLO2中的5种更多了:

特征图13* 1326* 2652* 52
感受野
先验框(116x90),(156x198),(373x326)(30x61),(62x45),(59x119)(10x13),(16x30),(33x23)

先验框如下图所示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值