Tensorflow实例:mnist手写数字

Tensorflow实例:mnist手写数字

本文将给出一个完整的Tensorflow程序来解决MNIST手写数字识别问题。代码中包含的功能有:带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终模型更加健壮。具体代码如下:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#mnist = input_data.read_data_sets("E:\科研\TensorFlow教程\MNIST_data", one_hot=True)

"""
print("Training data size: %d" % mnist.train.num_examples)
print("Validating data size: %d" % mnist.validation.num_examples)
print("Testing data size: %d" % mnist.test.num_examples)

batch_size = 100
xs, ys = mnist.train.next_batch(batch_size)
print("X shape: ", xs.shape)
print("Y shape: ", ys.shape)
"""

INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99

def inference(input_tensor, avg_class, weights1, biases1,
              weights2, biases2):
    if avg_class == None:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2

    else:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)

def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name="x-input")
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name="y-input")

    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))

    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    y = inference(x, None, weights1=weights1, biases1=biases1, weights2=weights2, biases2=biases2)

    global_step = tf.Variable(0, trainable=False)

    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variable_averages_op = variable_averages.apply(tf.trainable_variables())

    average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    regularization = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularization

    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name="train")

    correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        validate_feed = {x: mnist.validation.images,
                         y_: mnist.validation.labels}

        test_feed = {x: mnist.test.images, y_: mnist.test.labels}

        for i in range(TRAINING_STEPS):
            if i % 1000 == 0:
                validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                print("After %d training steps, validation accuracy"
                      "using average model is %g " % (i, validate_acc))

            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            sess.run(train_op, feed_dict={x: xs, y_: ys})

        test_acc = sess.run(accuracy, feed_dict=test_feed)
        print("After %d training steps, test accuracy using average "
              "model is %g" % (TRAINING_STEPS, test_acc))
def main(argv=None):
    mnist = input_data.read_data_sets("E:\科研\TensorFlow教程\MNIST_data", one_hot=True)
    train(mnist)

if __name__ == "__main__":
    tf.app.run()





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值