SSDF攻击、防御与展望

摘要:

随着无线通信业务的不断发展,频域也越来越成为了一种珍贵的稀缺资源,与此同时,相应的无线电安全问题层出不穷,为无线通信造成了十分恶劣的影响,本文从深入理解认知无线电安全开始,对一些典型的无线电安全防御技术进行介绍,尤其详细介绍SSDF技术的方法与展望。

关键词:频谱感知;无线通信;安全;无线安全;SSDF

认知无线电最大优势是利用分层模型解决目前因固定频谱分配政策导致的对频谱资源的不合理使用,将频段分成两类用户:主用户和认知用户。并要求已授权的主用户在空闲时刻贡献出频谱资源,让 未授权的认知用户使用,同时认知用户不能对主用户造成频谱干扰。[1]

这样的话可以使得认知用户动态地利用频谱,从而使得频谱利用率大大提高!但与此同时,出现恶意用户欺骗以及一些传统无线网络安全问题依旧存在,使得认知无线电处处存在安全问题,对于认知无线电技术的研究与发展极为不利。

恶意用户发送错误的感知结果给数据融合中心,使数据融合中心得出错误的频谱分析结果,称为SSDF攻击。其基本攻击模型如图1所示。

图1 基本攻击模型

伴随着SSDF攻击的产生,还会引起三种潜在的附属攻击形式,如表1所示:

拒绝感知攻击

频谱感知缺乏激励机制,导致认知用户没有直接的动机提交感知信息。

变换身份攻击

恶意用户被识别出来后,重新获得新的身份来实现漂白,从而能继续从事危害行为。

合谋攻击

恶意用户合谋形成攻击组,共同提交感知信息,提高攻击力度。

表1 潜在附属攻击形式

一、技术现状:

恶意用户发动SSDF攻击时.若认知网络的收敛值偏离了正确范围就会导致最终的判决结果出现错误,从而使得整个认知无线电系统无法正常进行动态频谱切换等,造成种种不利状况。因此,防御SSDF攻击的重中之重就是确保认知网络在遭受SSDF 攻击时仍然能够保持较高的检测性能。

目前,国内外对CSS网络中SSDF攻击的研究尚处于初始阶段,但已有不少研究成果。根据CSS网络结构,SSDF攻击的防御策略可分为集中式和分布式两种。在现有的研究成果中,集中式防御策略比重较大,其中应用较多的主要有以下3类:基于贝叶斯理论的SSDF防御策略、基于加权序贯概率比检测的SSDF防御策略和基于信誉机制的SSDF防御策略。[2]

其他集中式防御策略,比如利用相近度估计节点可靠程度提出的基于DS证据理论的防御策略等等都取得了不错的防御效果。 但实际上集中式CSS网络自身是存在一定缺陷的:融合中心位置较为固定,且融合中心与少数偏远的此用户之间存在某些通信约束。

分布式SSDF攻击的防御策略近年来发展的十分迅速。现有的分布式防御策略大致可分为4类:基于最大差值、基于中值滤波圈、基于信任机制、基于权值的分布式防御策略。

二、几种方法以及发展趋势

1.基于证据理论和模糊熵的抗SSDF攻击算法

在该算法中,次级用户根据局部能量检测结果获得相应的隶属度函数和基本概率分配函数。基于证据距离和经典冲突系数计算新的冲突系数,得到证据的冲突权重。模糊权重由模糊熵计算。通过更新可信度来获得可信度权重。在此基础上,对证据的概率分配函数进行修正,利用融合公式得到最终结果。与其他算法相比,该算法具有较高的检测概率和较低的虚警概率。它能有效抵御SSDF攻击,提高频谱感知的性能。[3]

2. 基于深度强化学习的可靠频谱感知

在SSDF攻击中,恶意次用户主动向融合中心发送错误的本地感知结果,从而影响合作频谱感知的实际结果。目前的工作探索深度强化学习算法(DRL)适应的行为变化过程中的社会支持系统,以克服前面提到的问题。DRL算法中的代理明智地避开了FC端接收到的感知能量值中的恶意数据,有效地降低了感知误差。该方法在SSDF攻击下的CSS可靠性优于传统方法和基于支持向量机的方法。[4]

3.使用聚类和深度学习策略

本工作使用聚类策略,使用信誉值和其他属性从诚实的主用户集中隔离恶意的主用户。被识别的恶意的和不合适的主用户被限制机会性的设备到设备(D2D)通信。提出了一种集成学习策略,在SSDF攻击下,若干网络约束指导混合框架中的可靠主用户传输,以支持主网络和次网络的服务质量。[5]

4.协作认知无线电网络的顺序统计和带老化因子的递归更新

为了检测合作认知无线电网络中恶意攻击下主用户的存在,提出了一种基于顺序统计和带老化因子的递归更新算法的检测方案。老化因子不仅使检测器对次级用户的行为变化敏感,而且允许存储空间的减少。顺序统计有助于选择具有较高合作信誉的次级用户,从而减少恶意用户的影响。与传统方案相比,该方案能更有效地抵御恶意攻击。[6]

根据上述几种方法,我们可以发现SSDF的防御技术发展趋势是针对问题越来越精细化,并且越来越和深度学习等人工智能方法相结合以不断地提高防御能力和效率。

三、今后可能的技术突破以及未来展望

之前SSDF攻击的防御策略普遍侧重于集中式策略,因此分布式防御方法在未来可能会是一个比较热门的研究方向。结合目前的一些研究成果来看,如何在能够实现抵御多攻击方式的情况下,进一步降 低算法计算量,从而降低感知设备要求,将会是今后的研究重点,大胆预测会在这些领域有所突破。

防御方案的实施也是需要一定的开销的,如何既能保证认知网络的安全性又能降低开销需要进一步研究。[7]

更真实的实验环境也是一个重要的方面!在本文所列举的几个例子与方法之中,对方法的效率研究与对比均是通过仿真实验来完成的,因此对于这个方面的研究突破也是十分的重要!

 基于通用软件无线电外设是目前被国内外较为认可的基于软件定义无线电的设备,在上面的开发还是有待进一步研究,模拟出比较 靠近真实的分布式协作频谱感知实验环境。[8]

同时我们还可以发现就是在如今随着chatgpt等人工智能技术的大幅度发展,未来SSDF防御技术很有可能会与这些技术相结合,从而取得更大的突破!

参考文献:

[1] 冯景瑜,卢光跃,包志强. 认知无线电安全研究综述[J]. 西安邮电学院学报,2012,17(2):47-52. DOI:10.3969/j.issn.1007-3264.2012.02.011.

[2] 卢光跃,苏杭. 分布式协作认知无线电SSDF攻击的防御策略综述[J]. 电信科学,2017,33(1):95-105. DOI:10.11959/j.issn.1000-0801.2017022.

[3] YE FANG, BAI PING, TIAN YUAN. An algorithm based on evidence theory and fuzzy entropy to defend against SSDF[J]. 系统工程与电子技术(英文版),2020,31(2):243-251. DOI:10.23919/JSEE.2020.000002.

[4] Anal Paul, Aneesh Kumar Mishra, Shivam Shreevastava, and Anoop Kumar Tiwari. 2022. Deep Reinforcement Learning based reliable spectrum sensing under SSDF attacks in Cognitive Radio networks. J. Netw. Comput. Appl. 205, C (Sep 2022).

[5] A. A. El-Sherif and K. J. R. Liu, "Joint Design of Spectrum Sensing and Channel Access in Cognitive Radio Networks," in IEEE Transactions on Wireless Communications, vol. 10, no. 6, pp. 1743-1753, June 2011, doi: 10.1109/TWC.2011.032411.100131.

[6] Lee S ,  Zhang Y ,  Yoon S , et al. Order statistics and recursive updating with aging factor for cooperative cognitive radio networks under SSDF attacks[J]. ICT Express, 2019, 6(1).

[7] 陈青青. 基于置信传播的SSDF攻击和防御方案研究[D]. 江苏:南京邮电大学,2019.

[8] 黄毅杰. 认知无线电网络中基于信誉机制的安全协作频谱感知研究[D].福建师范大学,2016.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值