1. 问题描述
已知系统状态空间描述,估计其中的加性扰动并进行补偿
对一个控制系统:
这是一个典型的控制系统,A是系统矩阵,B是输入矩阵,C是输出矩阵,D是直接传递矩阵,W是扰动项。
将扰动视为状态变量,可以得到如下方程:
得到了一个新的状态空间描述,然后对其作状态估计即可。
2. 举例说明
以系统如下系统为例:
其能观性矩阵为:,故系统完全能观测。
因此可以借助状态观测器:
即:
观测器中的特征值配置问题等价于对偶系统中绩点配置问题。
考虑该A-EC是二阶系统,参考二阶工程最佳参数,取阻尼比为,时间,可得特征多项式,并对特征多项式求解得到特征根。(上升时间约4.7T,调节时间取2%约为8.43T,取5%约为4.14T).
将特征根代入,即可求得矩阵E的取值。观测器设计完毕。
3. 仿真程序
仿真的时候需要通过matlab计算得出E的取值,然后再通过Simlink 仿真。
3.1 计算矩阵E的取值
A = [1 1; 0 0];
C = [1 0];
syms e1 e2 lambda; E = [e1; e2];
T=1e-3;
eigPloy = det(A-E*C - lambda*eye(2));
lambdaVal = roots([2*T^2, 2*T, 1]);
eigPloy = subs(eigPloy, lambda, lambdaVal);
[e1, e2] = solve(eigPloy, e1, e2);
E = double([e1 e2])';
3.2 Simulink仿真
====================(结束)====================
注1:能观性矩阵
注2:能控性矩阵
注3:举例中选用的系统为不稳定系统
参考书目:
《自动控制原理(第2版)》王建辉、顾树生
《现代控制理论(第2版)》张嗣赢、高立群