libtorch部署的常用操作,Mat与Tensor转换,多输出、多输出

1.多输入

// 多数入, input1 和 input2已经是tensor std::vector<torch::jit::IValue> inputs; 
inputs.push_back(input1); 
inputs.push_back(input2); 
torch::Tensor result = net_head.forward(inputs).toTensor();

2.MAT转Tensor

# 输入mat数据为z_crop, tensor为tensor_image_T 
torch::Tensor tensor_image_T = torch::from_blob(z_crop.data, {1,z_crop.rows, z_crop.cols,3},torch::kByte); 

tensor_image_T = tensor_image_T.permute({0,3,1,2}); 
tensor_image_T = tensor_image_T.toType(torch::kFloat);

3.Tensor转MAT

cv::Mat output_mat(cv::Size{ height, width }, CV_8UC3, tensor.data_ptr<uchar>());

4.Load模型

torch::jit::script::Module module = torch::jit::load(T_model_backbone);

5.多输出

// 2个输出
auto result = net_head.forward(inputs).toTuple();
torch::Tensor cls_score = result->elements()[0].toTensor();
torch::Tensor bbox_pred = result->elements()[1].toTensor();

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值