1.多输入
// 多数入, input1 和 input2已经是tensor std::vector<torch::jit::IValue> inputs;
inputs.push_back(input1);
inputs.push_back(input2);
torch::Tensor result = net_head.forward(inputs).toTensor();
2.MAT转Tensor
# 输入mat数据为z_crop, tensor为tensor_image_T
torch::Tensor tensor_image_T = torch::from_blob(z_crop.data, {1,z_crop.rows, z_crop.cols,3},torch::kByte);
tensor_image_T = tensor_image_T.permute({0,3,1,2});
tensor_image_T = tensor_image_T.toType(torch::kFloat);
3.Tensor转MAT
cv::Mat output_mat(cv::Size{ height, width }, CV_8UC3, tensor.data_ptr<uchar>());
4.Load模型
torch::jit::script::Module module = torch::jit::load(T_model_backbone);
5.多输出
// 2个输出
auto result = net_head.forward(inputs).toTuple();
torch::Tensor cls_score = result->elements()[0].toTensor();
torch::Tensor bbox_pred = result->elements()[1].toTensor();