【邱希鹏】神经网络与深度学习编程习题-chap1-warmup

本文通过一系列编程习题介绍了numpy库在神经网络与深度学习中的基本操作,包括array创建、数学运算、矩阵乘法、开方、求和、平均数计算、矩阵转置、指数计算以及最大值下标获取。同时,展示了如何利用matplotlib库绘制二次函数和正弦、余弦函数图像。
摘要由CSDN通过智能技术生成

1. numpy 的array操作

# 1. 导入numpy库
import numpy as np 

# 2.建立一个一维数组 a 初始化为[4,5,6], 
# (1) 输出a 的类型(type)
# (2) 输出a的各维度的大小(shape)
# (3) 输出 a的第一个元素(值为4)
a = np.array([4, 5, 6])
print(type(a))
print(a.shape)
print(a[0])

# 3.建立一个二维数组 b,初始化为 [ [4, 5, 6],[1, 2, 3]] 
# (1) 输出各维度的大小(shape)
# (2) 输出 b(0,0),b(0,1),b(1,1) 这三个元素(对应值分别为4,5,2)
b = np.array([[4, 5, 6], [1, 2, 3]])

print(b.shape)
print(b[0, 0], b[0, 1], b[1, 1])

# 4. (1) 建立一个全0矩阵 a, 大小为 3x3; 类型为整型(提示: dtype = int)
# (2) 建立一个全1矩阵b,大小为4x5; (3)建立一个单位矩阵c ,大小为4x4; (4)生成一个随机数矩阵d,大小为 3x2.
a = np.zeros((3, 3), dtype=int)
b = np.ones((4, 5))
c = np.eye(4, 4)
d = np.random.randn(3, 2)
print(a)
print(b)
print(c)
print(d)

# 5. 建立一个数组 a,(值为[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] ) ,
# (1) 打印a; 
# (2) 输出 下标为(2,3),(0,0) 这两个数组元素的值
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(a)
print(a[2, 3])
print(a[0, 0])

# 6.把上一题的 a数组的 0到1行 2到3列,放到b里面去,(此处不需要从新建立a,直接调用即可)
# (1) 输出b;
# (2) 输出b 的(0,0)这个元素的值
b = a[0:1, 2:3]
print(b)
print(b[0, 0])

# 7. 把第5题中数组a的最后两行所有元素放到 c中,(提示: a[1:2, :])
# (1) 输出 c ; 
# (2) 输出 c 中第一行的最后一个元素(提示ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值