基于自适应遗传算法的有源配电网多类型电动汽车并网优化调度
软件:Matlab
介绍:首先采用蒙特卡洛进行风光典型场景出力生成,运用copula函数考虑相关性并运用fuzzy-kmeans进行场景削减,将1000个场景削减成6个进行随机优化调度。
另外多类型电动汽车采用分时电价调度,目标函数考虑上级电网出力、峰谷差惩罚费用、风光调度、电动汽车负荷调度费用和网损费用,在IEEE33节点系统中进行仿真算例分析。
有相关参考文献
ID:96400657212151786
电气小助手
基于自适应遗传算法的有源配电网多类型电动汽车并网优化调度
引言
随着电动汽车的普及和可再生能源的不断发展,电力系统中出现了越来越多的多类型电动汽车(Multi-type Electric Vehicles,MEVs)。而这些MEVs的充电负荷管理与配电网调度之间的协调是一个复杂而具有挑战性的问题。因此,基于自适应遗传算法的有源配电网多类型电动汽车并网优化调度成为了一个备受关注的研究领域。
方法
本文采用Matlab软件进行研究,首先,我们使用蒙特卡洛方法进行风光典型场景出力的生成。通过对历史数据的分析,我们得到了一个具有代表性的场景集合,然后利用copula函数来考虑风光之间的相关性。接下来,我们使用fuzzy-kmeans聚类算法对场景集合进行削减,将原始的1000个场景削减成只有6个场景。这样做的目的是为了减少计算量,同时保留了足够多的场景来准确表示风光的波动情况。
此外,我们针对多类型电动汽车的充电负荷进行了调度。我们采用分时电价来引导电动汽车的充电行为,使其能够在价格较低的时段进行充电。为了综合考虑各种因素,我们设计了一个目标函数,其中包括上级电网的出力、峰谷差惩罚费用、风光调度、电动汽车负荷调度费用和网损费用。通过对IEEE33节点系统中的仿真算例进行分析,我们验证了我们提出的调度算法的有效性。
结论
本文基于自适应遗传算法提出了一种有源配电网多类型电动汽车并网优化调度的方法。通过使用蒙特卡洛方法和copula函数考虑风光之间的相关性,我们得到了具有代表性的场景集合。然后,通过fuzzy-kmeans聚类算法对场景集合进行削减,减少了计算量的同时保证了场景的准确性。此外,我们还采用分时电价调度多类型电动汽车的充电负荷,并设计了一个目标函数来综合考虑各种因素。通过在IEEE33节点系统中进行仿真算例分析,我们验证了我们提出的调度算法的有效性。
参考文献
[1] Zhang Q, Zhou Y, Chen H, et al. Optimal charging strategy for electric vehicle aggregators considering uncertain renewable generation[J]. International Journal of Electrical Power & Energy Systems, 2018, 96: 247-256.
[2] Hu J, Chen Y, Guo S, et al. Coordinated Scheduling of Wind-Photo-Thermal Power System and Multi-Type EVs Considering Wind Power and Load Uncertainty[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 682-693.
相关的代码,程序地址如下:http://coupd.cn/657212151786.html