动机
处理连续动作空间下,参数过多,运算过于复杂的问题。
想象一下,一个机器人每个时间步有7个动作,如腿、胳膊等各个关节。你可以调整的是每个部位对应电机的电压。先简单看作每个动作有3个动作状态,{-k,0,k},那么每个时间步就对应有 3 7 = 2187 3^7=2187 37=2187个动作空间。如果将k这个数字更细粒度划分的话,动作空间将会非常庞大。
因此,面对这样的情况,DDPG提出了新的方法。其关键在于改变策略函数。
实现
论文引入了一个新的策略函数 μ θ ( a ∣ s ) \mu_\theta(a|s) μθ(a∣s)来代替原本的 π θ ( a ∣ s ) \pi_\theta(a|s) πθ(a∣s)
π θ ( a ∣ s ) \pi_\theta(a|s) πθ(a∣s)将给定的状态,映射到所有动作的动作分布
μ θ ( a ∣ s ) \mu_\theta(a|s) μθ(a∣s)将给定的状态,直接映射为一个动作
显而易见提高了效率