强化学习的DDPG

论文链接

动机

处理连续动作空间下,参数过多,运算过于复杂的问题。

想象一下,一个机器人每个时间步有7个动作,如腿、胳膊等各个关节。你可以调整的是每个部位对应电机的电压。先简单看作每个动作有3个动作状态,{-k,0,k},那么每个时间步就对应有 3 7 = 2187 3^7=2187 37=2187个动作空间。如果将k这个数字更细粒度划分的话,动作空间将会非常庞大。

因此,面对这样的情况,DDPG提出了新的方法。其关键在于改变策略函数。

实现

论文引入了一个新的策略函数 μ θ ( a ∣ s ) \mu_\theta(a|s) μθ(as)来代替原本的 π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as)

π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as)将给定的状态,映射到所有动作的动作分布

μ θ ( a ∣ s ) \mu_\theta(a|s) μθ(as)将给定的状态,直接映射为一个动作

显而易见提高了效率

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值