时序预测TCN模型

提示:时序预测中时间卷积网络的相关模型


一、TCN

在这里插入图片描述

二、TCN的初步改进

  • [74] Dilated Convolutional Neural Networks for Time Series Forecasting
    在这里插入图片描述

  • [75] Probabilistic Forecasting with Temporal Convolutional Neural Network
    在这里插入图片描述
    在这里插入图片描述

  • [76] Multivariate Temporal Convolutional Network A Deep Neural Networks Approach for Multivariate Time Series Forecasting
    在这里插入图片描述
    在这里插入图片描述

  • [77] Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting
    在这里插入图片描述

三、TCN的进一步改进

四、其它领域的TCN模型

  • MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation
    在这里插入图片描述

  • MS-TCN++: Multi-Stage Temporal Convolutional Network for Action Segmentation
    在这里插入图片描述


总结

### TCN Temporal Convolutional Network 时序预测模型实现与案例 #### 实现细节 TCN(Temporal Convolutional Network)是一种专门设计用于处理时间序列数据的神经网络结构。该网络利用膨胀卷积(dilated convolutions),使得每一层可以覆盖更大的上下文范围而不增加参数数量或计算复杂度[^2]。 对于具体的实现方式,在构建TCN时通常会采用一系列的一维卷积操作,这些卷积核被设置成不同的扩张率以捕捉不同尺度上的依赖关系。为了确保因果性——即未来的信息不会影响当前时刻之前的输出——还需要特别注意调整填充模式和其他超参数配置[^4]。 下面是一个简化版的TCN架构定义: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Conv1D from tensorflow.keras.models import Model def build_tcn(input_shape=(None, 1), num_channels=[25]*8, kernel_size=2, dropout_rate=0.3): inputs = Input(shape=input_shape) x = inputs for i in range(len(num_channels)): dilation_rate = 2 ** i # Apply dilated convolution with causal padding to maintain temporal order. x = Conv1D( filters=num_channels[i], kernel_size=kernel_size, padding='causal', activation='relu', dilation_rate=dilation_rate)(x) if dropout_rate > 0: x = tf.keras.layers.Dropout(dropout_rate)(x) outputs = Dense(1)(x) # Final dense layer maps features back down to one dimension. model = Model(inputs, outputs) return model ``` 此代码片段展示了如何创建一个多层TCN模型,其中包含了可调节宽度(`num_channels`)和内核大小(`kernel_size`)等多个选项供调参优化之用。值得注意的是,这里采用了`padding='causal'`来保证每一步只受到过去信息的影响。 #### 应用实例 在实际应用场景中,TCNs已被证明能够有效地解决各种类型的顺序建模问题,尤其是在自然语言处理领域之外的任务上表现出色,比如交通流量预测、电力负荷估计等。相比于传统的RNN及其变体(LSTM/GRU),TCNs不仅拥有更好的性能指标,而且训练过程更加稳定高效[^1]。 例如,在一项关于股票市场价格走势的研究里,研究人员发现当使用带有适当正则化的深层TCN来进行短期趋势分析时,可以获得显著优于其他方法的结果。这主要得益于其强大的表达能力和良好的泛化特性。 另外,由于TCN允许并行计算所有位置处的状态更新,因此非常适合现代GPU加速环境下的大规模分布式学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值