时序预测TCN模型

部署运行你感兴趣的模型镜像

提示:时序预测中时间卷积网络的相关模型


一、TCN

在这里插入图片描述

二、TCN的初步改进

  • [74] Dilated Convolutional Neural Networks for Time Series Forecasting
    在这里插入图片描述

  • [75] Probabilistic Forecasting with Temporal Convolutional Neural Network
    在这里插入图片描述
    在这里插入图片描述

  • [76] Multivariate Temporal Convolutional Network A Deep Neural Networks Approach for Multivariate Time Series Forecasting
    在这里插入图片描述
    在这里插入图片描述

  • [77] Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting
    在这里插入图片描述

三、TCN的进一步改进

四、其它领域的TCN模型

  • MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation
    在这里插入图片描述

  • MS-TCN++: Multi-Stage Temporal Convolutional Network for Action Segmentation
    在这里插入图片描述


总结

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

在嵌入式系统中实现轻量级的时间序列预测模型TCN(Temporal Convolutional Network)时,需要从网络结构设计、计算资源优化和部署策略等多个方面进行综合考量。TCN是一种基于卷积神经网络(CNN)的架构,能够有效处理时间序列数据,具有并行化处理能力强、训练稳定性高以及长期依赖建模能力等优势,非常适合嵌入式场景中的低延迟推理需求。 ### 1. 轻量级TCN的设计与优化 为了适应嵌入式系统的计算和内存限制,TCN可以通过以下方式实现轻量化: - **深度可分离卷积**:将标准卷积替换为深度可分离卷积(Depthwise Separable Convolution),可以显著减少参数数量和MAC操作次数,从而降低计算开销[^1]。 - **通道剪枝(Channel Pruning)**:通过分析各通道对最终输出的重要性,去除冗余通道,进一步压缩模型大小。 - **低秩分解(Low-Rank Factorization)**:对卷积核矩阵进行低秩近似,减少权重参数。 - **使用稀疏连接结构**:例如采用类似MobileNet或SqueezeNet的设计理念,在保持性能的同时减少参数量。 ### 2. 模型结构改进与模块化构建 参考ATCN(Adaptive Temporal Convolutional Network)的设计理念,引入STCB(Scalable Temporal Convolution Block)作为基本模块,允许以不同配置堆叠形成多层级网络结构,提高模型的可扩展性和灵活性[^1]。该方法能够在不牺牲性能的前提下,实现模型大小和推理速度的平衡。 此外,结合知识蒸馏(Knowledge Distillation, KD)技术,可以在保持较高精度的同时进一步压缩TCN模型规模。通过使用一个更大的教师模型来指导小规模学生模型的学习过程,使学生模型在有限资源下也能获得良好的预测性能[^3]。 ### 3. 嵌入式部署与加速方案 对于嵌入式平台上的部署,需考虑如下几点: - **硬件适配性优化**:针对ARM Cortex-M系列微控制器,如Cortex-M7,采用定点化(Fixed-point Quantization)和8位整型量化(INT8 Quantization)技术,提升模型在MCU上的运行效率[^1]。 - **内存访问优化**:通过调整张量布局(NHWC vs NCHW)、缓存复用机制以及输入输出缓冲区管理,降低内存带宽占用。 - **边缘设备推理框架支持**:利用TensorFlow Lite Micro、ONNX Runtime Micro或PyTorch Mobile等轻量级推理引擎,实现高效的模型加载和执行。 ### 4. 实际应用示例 一个典型的轻量级TCN部署流程可能包括以下几个步骤: 1. 在主机端使用PyTorch或TensorFlow构建TCN模型,并进行训练和验证; 2. 使用模型压缩技术(如剪枝、量化、知识蒸馏)进行优化; 3. 将优化后的模型转换为TensorFlow Lite或ONNX格式; 4. 部署到目标嵌入式平台(如STM32F7、Cortex-M7开发板); 5. 利用CMSIS-NN库加速卷积运算,实现高效推理。 ```python import torch import torch.nn as nn class LightweightTCNBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1): super().__init__() padding = (kernel_size - 1) * dilation self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation) self.relu = nn.ReLU() self.norm = nn.BatchNorm1d(out_channels) def forward(self, x): y = self.conv1(x) y = self.norm(y) y = self.relu(y) return y + x[:, :, :y.shape[2]] # 残差连接 class LightweightTCN(nn.Module): def __init__(self, input_size, num_channels, kernel_size=3, dropout=0.2): super().__init__() layers = [] for i in range(len(num_channels)): dilation = 2 ** i in_chs = input_size if i == 0 else num_channels[i-1] out_chs = num_channels[i] layers.append(LightweightTCNBlock(in_chs, out_chs, kernel_size, dilation)) self.network = nn.Sequential(*layers) self.fc = nn.Linear(num_channels[-1], 1) def forward(self, x): y = self.network(x) return self.fc(y[:, :, -1]) ``` ### 5. 性能评估与对比 在相同数据集和任务条件下,与传统LSTM、GRU等循环模型相比,轻量级TCN通常表现出更高的推理速度和更低的能耗,尤其适合实时性强、功耗敏感的嵌入式应用场景。此外,其并行计算特性也更利于在具备SIMD指令集的微处理器上进行加速。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值