1.TensorRT-LLM 如何提升 LLM 模型推理效率
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。
当前 LLM 模型推理的主要瓶颈是 GPU 显存资源不足。因此,各类加速框架主要集中于降低 GPU 显存峰值和提高 GPU 使用率两大目标。
TensorRT-LLM [ 1] 是 NVIDIA 推出的大语言模型(LLM)推理优化框架。它提供了一组 Python API 用于定义 LLMs,并且使用最新的优化技术将 LLM 模型转换为 TensorRT Engines,推理时直接使用优化后的 TensorRT Engines。
TensorRT-LLM 主要利用以下四项优化技术提升 LLM 模型推理效率。
1.1量化
模型量化技术是通过降低原始模型的精度来减少模型推理时的 GPU 显存使用。
TensorRT 支持多种模型的多种精度,以下列举了部分主流模型支持的量化精度。
W8A8 SQ 使用了 SmoothQuant 技术 [ 2] ,在不降低模型推理准确率的前提下,将模型权重和激活层都降低为 INT8 精度,显著减少了 GPU 显存消耗。
W4A16/W8A16 是指模型权重为 INT4 或者 INT8,激活层为 FP16 精度。
W4A16 AWQ 以及 W4A16 GPTQ 分别实现了 AWQ [ 3] 和 GPTQ [ 4] 两篇论文中提到的量化方法。模型权重为 INT4,激活层为 FP16 精度。
1.2In-Flight Batching
传统的 Batching 技术为 Static Batching 的,需要等 Batching 中所有序列推理完成后才能进行下一次批次。下图为一个输出最大 Token 为 8,Batch size 为 4 的推理过程,使用 Static Batching 技术。S3 序列在 T5 时刻就已经完成推理,但是需要等到 S2 序列在 T8 时刻推理完成后才会处理下一个 sequence,存在明显的资源浪费。
In-Flight Batching 又名 Continuous Batching 或 iteration-level batching,该技术可以提升推理吞吐率,降低推理时延。Continuous Batching 处理过程如下,当 S3 序列处理完成后插入一个新序列 S5 进行处理,提升资源利用率。详情可参考论文 Orca: A Distributed Serving System for Transformer-Based Generative Models [ 5] 。
1.3Attention
Attention 机制用于从序列中提取关键/重要信息,在情感识别、翻译、问答等任务中起着至关重要的作用。Attention 机制按照演进顺序可以分为 MHA(Multi-head Attention)、MQA(Multi-query Attention) [ 6] 以及 GQA(Group-query Attention) [ 7] 机制。MQA 和 GQA 都是 MHA 的变种。
MHA 是标准的多头注意力机制,每个 query 存储一份 KV,因此需要使用较多的显存。MQA 所有 query 共享一份 KV,推理时容易丢失一些细节信息。GQA 将 query 进行分组,组内共享一份 KV,可以有效避免 MHA 和 MQA 的问题。
TensorRT-LLM 支持 MHA、MQA 及 GQA 方式,可以在 tensorrt_llm.functional.gpt_attention 查看具体实现。
1.4 Graph Rewriting
TensorRT-LLM 在将 LLM 模型编译为 TensorRT Engines 时会对神经网络进行优化,提升执行效率。
2.基于阿里云容器服务 ACK 的实战体验
2.1云原生 AI 套件
云原生 AI 套件是阿里云容器服务 ACK 提供的云原生 AI 技术和产品方案,帮助企业更快、更高效地落地云原生 AI 系统。
本文将介绍如何基于阿里云容器服务 ACK 云原生 AI 套件,利用 TensorRT-LLM 优化 LLM 模型推理。
2.2环境配置
-
参考文档安装云原生 AI 套件 [ 8] 。
-
登陆容器服务管理控制台 [ 9] ,在左侧导航栏选择集群 > 应用 > 云原生 AI 套件。等待开发控制台准备就绪后,单击开发控制台。
-
在开发控制台左侧,选择 Notebook,在 Notebook 页面右上角,单击创建 Notebook 创建新的 Notebook 环境。Notebook 资源需要 CPU:12C,内存:40G,GPU 显存:24GB。(节点对应规格为 ecs.gn7i-c16g1.4xlarge [ 10] )
2.3准备 TensorRT-LLM 环境
- 构建 Notebook 所需镜像。
FROM docker.io/nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get upgrade -y && \
apt-get install -y --no-install-recommends \
libgl1 libglib2.0-0 wget git curl vim \
python3.10 python3-pip python3-dev build-essential \
openmpi-bin libopenmpi-dev jupyter-notebook jupyter
RUN pip3 install tensorrt_llm -U --extra-index-url https://pypi.nvidia.com
RUN pip3 install --upgrade jinja2==3.0.3 pynvml>=11.5.0
RUN rm -rf /var/cache/apt/ && apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* && \
rm -rf /root/.cache/pip/ && rm -rf /*.whl
WORKDIR /root
RUN git clone https://github.com/NVIDIA/TensorRT-LLM.git --branch v0.7.1
ENTRYPOINT ["sh","-c","jupyter notebook --allow-root --notebook-dir=/root --port=8888 --ip=0.0.0.0 --ServerApp.token=''"]
- 下载模型,本文以 Baichuan2-7B-Base 为例。
a.确认 tensorrt_llm 安装成功
! python3 -c "import tensorrt_llm; print(tensorrt_llm.__version__)"
# 0.7.1
b.安装 baichuan 依赖
! cd /root/TensorRT-LLM/examples/baichuan
!pip3 install -r requirements.txt
c.下载 Baichuan2-7B-Chat 模型
!yum install git-lfs
!GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/baichuan-inc/Baichuan2-7B-Chat.git
!cd Baichuan2-7B-Chat/
!git lfs pull
d.将模型编译为 TensorRT Engines,权重指定为 INT8。模型转换约 5 分钟。
! cd /root/TensorRT-LLM/examples/baichuan
# Build the Baichuan V2 7B model using a single GPU and apply INT8 weight-only quantization.
! python3 build.py --model_version v2_7b \
--model_dir ./Baichuan2-7B-Chat \
--dtype float16 \
--use_gemm_plugin float16 \
--use_gpt_attention_plugin float16 \
--use_weight_only \
--output_dir ./tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/
e.使用构建好的 tensort engines 进行推理
# With INT8 weight-only quantization inference
! python3 ../run.py --input_text "世界上第二高的山峰是哪座?" \
--max_output_len=50 \
--tokenizer_dir=./Baichuan2-7B-Chat \
--engine_dir=./tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/
预期输出:
Input [Text 0]: "世界上第二高的山峰是哪座?"
Output [Text 0 Beam 0]: "世界上第二高的山峰是喀喇昆仑山脉的乔戈里峰(K2),海拔高度为8611米。"
2.4性能测试
- 使用 TensorRT-LLM 自带的 benchmark。
向 _allowed_configs dict 中添加 baichuan2_7b_chat 配置,代码可参考链接 [1****1] 。
注:0.7.1 版本 benchmark 还未支持 baichuan2 模型,因此需要手动修改下 allowed_configs 配置。
! cd /root/TensorRT-LLM/benchmarks/python
! vim allowed_configs.py
# "baichuan2_7b_chat":
ModelConfig(name="baichuan2_7b_chat",
family="baichuan_7b",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=32,
num_heads=32,
hidden_size=4096,
vocab_size=125696,
hidden_act='silu',
n_positions=4096,
inter_size=11008,
max_batch_size=128,
max_input_len=512,
max_output_len=200,
builder_opt=None,
)),
运行 benchmark:
! python3 benchmark.py \
-m baichuan2_7b_chat \
--mode plugin \
--engine_dir /root/TensorRT-LLM/examples/baichuan/tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu \
--batch_size 1 \
--input_output_len "32,50;128,50"
# batch_size 并发度
# input_output_len 输入输出的长度,多个测试用例用分号分隔
Expected outputs:
[BENCHMARK] model_name baichuan2_7b_chat world_size 1 num_heads 32 num_kv_heads 32 num_layers 32 hidden_size 4096 vocab_size 125696 precision float16 batch_size 1 input_length 32 output_length 50 gpu_peak_mem(gb) 8.682 build_time(s) 0 tokens_per_sec 60.95 percentile95(ms) 821.977 percentile99(ms) 822.093 latency(ms) 820.348 compute_cap sm86 generation_time(ms) 798.45 total_generated_tokens 49.0 generation_tokens_per_second 61.369
[BENCHMARK] model_name baichuan2_7b_chat world_size 1 num_heads 32 num_kv_heads 32 num_layers 32 hidden_size 4096 vocab_size 125696 precision float16 batch_size 1 input_length 128 output_length 50 gpu_peak_mem(gb) 8.721 build_time(s) 0 tokens_per_sec 59.53 percentile95(ms) 841.708 percentile99(ms) 842.755 latency(ms) 839.852 compute_cap sm86 generation_time(ms) 806.571 total_generated_tokens 49.0 generation_tokens_per_second 60.751
- 对比 INT8 量化模型与原始模型性能。
原始模型执行命令:
def normal_inference():
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained(model_path)
messages = []
messages.append({"role": "user", "content": prompt})
response = model.chat(tokenizer, messages)
print(response)
INT8 量化模型命令:
def tensorrt_llm_inference():
from subprocess import Popen, PIPE
script = f'''python3 /root/TensorRT-LLM/examples/run.py --input_text "{prompt}" \
--max_output_len=50 \
--tokenizer_dir=/root/TensorRT-LLM/examples/baichuan/Baichuan2-7B-Chat \
--engine_dir=/root/TensorRT-LLM/examples/baichuan/tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/'''
p = Popen(['sh', '-c', script], stdout=PIPE,
stderr=PIPE)
output, err = p.communicate()
if p.returncode != 0:
print(f"tensorrt_llm_inference() error:{err}")
return
print(output)
TensorRT-LLM 加速方案在采用 INT8 模型量化的情况下,相比于默认的 Baichuan2-7B-Chat 模型,显存峰值降低了 *43.8% *,时延降低了 61.1%。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~