PGML:向量数据库内一体化的RAG框架

架构总览

特性:
● 支持数据库中进行的ai和ml分析
● 支持gpu加速
● 集成多种开源llm和rag框架
● 支持传统的机器学习模型

使用方法

云端试用

官方提供了云服务试用,根据要求注册账号即可: 注册地址

本地部署

官方提供了docker镜像,执行如下命令即可安装

docker run \
    -it \
    -v postgresml_data:/var/lib/postgresql \
    -p 5433:5432 \
    -p 8000:8000 \
    ghcr.io/postgresml/postgresml:2.7.12 \
    sudo -u postgresml psql -d postgresml

进入容器后,可选发现预先定义好一些表,同时已经安装了pgvector和pgml插件

一体化RAG框架

传统的RAG方式VS一体化RAG

RAG基本流程

PGML的一体化RAG是针对传统RAG进行改进的解决方案。一体化的RAG不再依赖分散的模块来处理嵌入、检索、重排和文本生成,而是将它们组合在一项服务下。PGML提供了如下RAG基本步骤:

  1. 文档切分模块:用于把完整文档按照不同的切分策略进行切分
  2. 向量化模块:支持使用开源向量模型对文本块进行向量化表示
  3. 检索模块:用于对输入向量和文档向量进行相似性检索或者重排序
  4. 答案生成模块:支持使用开源的LLM对答案进行总结生成

文档切分

# 算子为pgml.chunk
# pgml.chunk(
#    splitter TEXT,    -- splitter name
#    text TEXT,        -- text to embed
#    kwargs JSON       -- optional arguments
# )

# 实际例子如下
SELECT pgml.chunk('recursive_character', content,  '{"chunk_size": 250}') FROM documents;

切分策略与langchain基本差不多,recursive_character是最常用的。此外还支持latex、markdown、ntlk、python、spacy等切分策略。

文档向量化

# 算子为pgml.embed
# pgml.embed(
#    transformer TEXT,
#    "text" TEXT,
#    kwargs JSONB
#)

# 实际例子如下
SELECT pgml.embed('mixedbread-ai/mxbai-embed-large-v1', chunk) from chunks;

检索和重排序

# 算子为pgml.rank
# pgml.rank(
#     transformer TEXT,
#     query TEXT,
#     documents TEXT[],
#     kwargs JSONB
# )

# 实际例子如下
SELECT pgml.rank('mixedbread-ai/mxbai-rerank-base-v1', 'How do I write a select statement with pgml.transform?', array_agg("chunk"), '{"return_documents": false, "top_k": 6}'::jsonb || '{}') AS rank

文本生成

# 算子为pgml.transform
# SELECT pgml.transform(
#     task   => TEXT OR JSONB,     -- Pipeline initializer arguments
#     inputs => TEXT[] OR BYTEA[], -- inputs for inference
#     args   => JSONB              -- (optional) arguments to the pipeline.
# )

# 实际例子如下
SELECT *
FROM pgml.transform(
  task => 'text-generation',
  inputs => ARRAY['In a galaxy far far away']
);

完整应用方案

第一步 创建一张表,用于存储文档切分的结果

CREATE TABLE chunks(id SERIAL PRIMARY KEY, chunk text NOT NULL, chunk_index int NOT NULL, document_id int references documents(id));


INSERT INTO chunks (chunk, chunk_index, document_id)
SELECT
    (chunk).chunk,
    (chunk).chunk_index,
    id
FROM (
    SELECT
        pgml.chunk('recursive_character', document, '{"chunk_size": 250}') chunk,
        id
    FROM
        documents) sub_query;

第二步 创建向量表,把chunk进行embedding并存储

CREATE TABLE embeddings (
    id SERIAL PRIMARY KEY, chunk_id bigint, embedding vector (1024),
    FOREIGN KEY (chunk_id) REFERENCES chunks (id) ON DELETE CASCADE
);


INSERT INTO embeddings(chunk_id, embedding)
SELECT
    id,
    pgml.embed('mixedbread-ai/mxbai-embed-large-v1', chunk)
FROM
    chunks;

前两步可以在直接在一张表中创建两个字段保存即可,无需创建两个表

第三步 输入执行向量化,并按照对数据库中的向量进行检索排序

WITH embedded_query AS (
    SELECT
        pgml.embed('mixedbread-ai/mxbai-embed-large-v1', 'How do I write a select statement with pgml.transform?', '{"prompt": "Represent this sentence for searching relevant passages: "}')::vector embedding
)
SELECT
    chunks.id,
    (
        SELECT
            embedding
        FROM embedded_query) <=> embeddings.embedding cosine_distance,
    chunks.chunk
FROM
    chunks
    INNER JOIN embeddings ON embeddings.chunk_id = chunks.id
ORDER BY
    embeddings.embedding <=> (
        SELECT
            embedding
        FROM embedded_query)
LIMIT 6;

第四步 对数据库中的相似片段进行总结生成

# 省略上述检索步骤
SELECT
    pgml.transform (
      task => '{
        "task": "conversational",
        "model": "meta-llama/Meta-Llama-3.1-8B-Instruct"
      }'::jsonb, 
      inputs => ARRAY['{"role": "system", "content": "You are a friendly and helpful chatbot."}'::jsonb, jsonb_build_object('role', 'user', 'content', replace('Given the context answer the following question: How do I write a select statement with pgml.transform? Context:\n\n{CONTEXT}', '{CONTEXT}', chunk))], 
      args => '{
        "max_new_tokens": 100
      }'::jsonb)
FROM
    context;

transform改成transform_stream即变成流式输出

总结分析

优点:
● 一体化的RAG框架,集成了多种开源模型和langchain的组件,可以直接在数据库中进行RAG构建
● 支持多种机器学习算法,可以实现数据库内一站式的机器学习和数据分析
● 全程SQL操作即可,适合传统数据分析人员或者对框架和其他编程语言不熟悉的人

缺点:
● 镜像内不含模型,实时拉取模型会比较慢
● 不支持单独部署成一个服务,但是可以结合官方提供的Python和JS的SDK进行二次封装
● 由于数据库的安全问题不支持直接接入闭源模型,需要手工调整工作流程

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值