基于噪声伪标签和对抗性学习的医学图像分割注释有效学习

一、背景

如今深度学习的成功在很大程度上取决于大量训练图像的可用性,以及专家提供的手动注释。然而,由于为分割任务提供像素级注释非常耗时,并且依赖具有领域知识的专家来实现,因此很难获得用于医学图像分割的大量手动注释。

二、创新点

提出一个用于分割任务的注释高效学习框架

核心方法:

1、从一组辅助对象遮罩中学习,这些辅助对象遮罩与训练图像不成对,可以通过形状先验信息或可能不同领域的公开可用数据集轻松获得。
2、对于一些可以由参数化模型精确描述的形状良好的对象,我们直接使用参数化模型作为形状,然后生成一组辅助遮罩。
3、对于难以通过参数化模型拟合的形状更复杂的对象,我们利用来自其他可用域(例如公共数据集)的对象掩码样本
4、基于未配对的训练图像集和辅助遮罩,我们使用循环一致生成对抗网络(CycleGAN),其中生成器学习获取训练图像的伪标签
通过使用辅助遮罩的对抗性学习引入隐式形状约束,以获得更精确的伪标签。基于带噪伪标签提出了一种带噪声加权骰子损失的抗噪迭代训练方法来训练最终的分割模型,以获得较高的分割性能

优点:

1、避免了对训练图像的注释,借助辅助掩模为训练图像生成伪标签
2、为了从有噪声的伪标签中学习,进一步引入了一种使用噪声加权骰子损失的抗噪声迭代学习方法

结果:

1、 基于VAE的鉴别器和DGCC模块有助于获得高质量的伪标签
2、我们提出的噪声鲁棒学习方法可以有效地克服噪声伪标签的影响
3、在不使用训练图像注释的情况下,我们的方法的分割性能与从人类注释中学习的分割性能接近甚至相当

图示

在这里插入图片描述
a) 我们使用一组辅助口罩(例如,从胎儿头部分割中的形状先验模型获得),这些口罩与训练图像不配对,用于训练。
b) 一种改进的CycleGAN算法从未配对图像和辅助掩模中学习,得到每个训练图像对应的伪标签,其中提出了基于VAE的鉴别器和DGCC模块,以获得更好的性能。
c) 训练集的伪标签。
d) 一种抗噪迭代学习方法,使用伪标签训练最终分割模型。

流程

1、借助于与训练图像不成对的辅助遮罩,我们首先使用生成器将医学图像转换为相应的伪标签
2、基于改进的CycleGAN框架,该框架通过对抗性学习引入隐式高级形状约束。我们提出了一个基于VAE的鉴别器和一个DGCC模块,该模块使用鉴别器的反馈校准伪标签生成器,以获得更好的伪标签
3、从带噪伪标签中学习得到最终的分割模型,并提出了一种基于噪声加权骰子损失和基于标签质量的样本选择(LQSS)模块的抗噪迭代训练方法,以克服噪声的影响,获得高性能的分割模型

三、具体操作

I I I S S S 分别代表医学图像域和分割掩模域

1、随机遮罩:

我们2D空间中生成随机椭圆来模拟来自域S的样本。为了使椭圆的形状接近真实分割目标的形状,基于真实目标对应值的先验分布来约束大小、纵横比和方向。这样我们获得了未配对的训练图像和随机遮罩

使用形状先验模型分割结构


对于难以建模的更复杂的分割结构(例如,肺和肝脏),我们可以直接使用来自掩模域(未配对到训练图像)的一组样本进行训练。

2、生成伪标签及损失函数

1、对于未与我们的未注训练图像配对的辅助遮罩使用伪标签生成器 G a G_{a} Ga 来将医学图像域 I I I转化为对应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值