在游戏和强化学习中,游戏环境实例是一个具体的游戏场景,它为智能体提供了与其进行交互的平台。智能体通过观察环境的状态、采取动作并接收奖励来学习如何完成任务。在强化学习的上下文中,环境通常是一个模拟的或真实世界的场景,其中包含智能体需要与之交互的元素。
对于Gym库来说,环境实例是通过调用gym.make()
函数创建的。这个函数接受一个环境名称作为参数(在本例中是'CartPole-v1'
),并返回一个环境对象,该对象包含了智能体与环境进行交互所需的所有方法和属性。
但如果所需的环境不在Gym库中,你需要从头开始构建它。从头创建环境涉及定义状态空间、动作空间、奖励函数以及环境的动态变化(即状态转移函数)。
基本步骤:
- 定义状态空间:
- 确定环境可能的所有状态。这些状态可以是离散的(如GridWorld中的格子)或连续的(如机器人的位置和速度)。
- 在Python中,你可以使用类(class)来定义环境,并在类的构造函数中初始化状态空间。
- 定义动作空间:
- 确定智能体可以采取的所有动作。这些动作同样可以是离散的(如上下左右)或连续的(如施加的力或转向角度)。
- Gym提供了
spaces
模块,其中包含用于定义动作空间的类