鼎捷数智数据要素案例
该数据要素项目案例由鼎捷数智投递并参与“数据猿年度金猿策划活动——2024数据要素产业年度创新服务企业榜单/奖项”评选。
大数据产业创新服务媒体
——聚焦数据 · 改变商业
1. 原数仓技术架构落后,企业数据增长速度快,已无法支撑爆炸性大数据处理加工需求(预计明年将达到亿级),原数仓基于关系型数据库,性能优化瓶颈难以突破,硬件资源扩展受限;
2. 数据口径不统一,数据未实现标准化管理,各部门各自为政,数据孤岛严重,分析数据计算逻辑自拟;业务数据名称、定义不统一;
3. 数据问题难定位,诊断问题成本很高,解决问题效率低,难以达到业务需求时效;
4. 数据质量不足,数据质量没有有效的改善机制,数据不够精准,从而影响战略决策分析和一线业务数据支撑;
5. 数据共享未推广,数据共享服务手段单一,数据服务开发效率低,不能及时满足多样的数据需求;
6. 找不到数据资产价值切入点,面对业务沉淀下的大量数据,难以转化为数据资产,数据复用性差,难以让数据为业务提供高价值服务。
时间周期:
项目开始时间:2023年9月15日
中间重要时间节点:2024年1月3日-24年1月31日,模型开发,数据标准建立
项目完结时间:2024年5月31日,项目一期结束
数据要素价值需求
1. 消除数据孤岛:解决各部门各自为政,业务数据定义、计算逻辑和使用标准不统一的问题;
2. 建立统一的数据标准:解决由于数据源头多,缺乏统一的标准,导致各部门在生成和使用数据时存在差异的问题,确保数据的准确性和一致性;
3. 实现数据资产化:解决数据资产不清,数据资产管理无序问题,盘点厘清企业数据资产的范围和分类,明确数据资产的权责;
4. 改善数据质量:解决数据存在缺失、错误、过时等质量问题,通过识别数据质量问题,提升数据质量;
5. 推广数据共享:解决企业内部和外部的数据流通障碍,提升数据的利用效率和业务协同能力。
数据需求解决方案
1. 引入数据中台:将各部门的数据集中管理,消除数据孤岛,实现数据的共享和整合,保证数据的一致性;
2. 建立统一的数据标准体系:引入统一的数据管理标准和规范,确保各部门在数据生成、存储、使用和共享时遵循一致的规则;
3. 数据资产盘点:通过以数据和资产视角重新梳理和盘点数据资产目录,完成主数据标准定标,业务数据标准定标,并在数据中台落地,从而提升企业数据价值;
4. 加强数据质量管理:定期进行数据质量评估,确保数据的准确性和完整性,从而提高数据的可信度