摘要
2020年6月,北斗卫星导航系统全面部署完成。为了支持安全关键型应用,系统必须提供可靠的空间信号(SIS)性能。本文从完好性的角度对区域(BDS-2)和全局(BDS-3)系统的测距误差(SISREs)进行了表征,作为北斗系统发展的关键步骤之一。根据航空安全标准,提出了一种数据驱动的SISRE评估方案。该方案通过评估包络用户测距精度(URA)和先验故障概率,分别捕获正常和异常SIS行为。通过对2016年开始的4.5年星历表和2019年开始的1.5年星历表数据的处理,初步揭示了北斗系统SIS特征的全貌,揭示了不同卫星之间的显著性能差异。
1 介绍
作为“四大”核心星座之一,中国北斗卫星导航系统近年来逐步演进。自2012年12月以来,区域北斗系统(BDS- 2)已利用14颗稀疏分布于地球静止轨道(GEO)、倾斜轨道(IGSO)和中轨(MEO)的卫星,为亚太地区用户提供定位、导航和定时(PNT)服务。随后,全球系统(BDS- 3)的部署开始于2015年,并于2020年6月完成。新星座(BDS-3)可提供30颗新的太空卫星,包括3颗GEO、3颗IGSO和24颗MEO,提供全球PNT服务。作为全球卫星导航系统(GNSS)的成员,北斗系统有望通过提高导航的准确性、完好性、连续性和可用性为用户带来显著的好处。
PNT服务的质量在很大程度上取决于星座的空间信号性能。SIS性能的典型特征是评估相关的SIS测距误差(SISRE)。SISRE描述了主要来自卫星星历误差和时钟误差的等效伪距误差,是影响定位精度和完好性的主要误差源之一。
SISRE也是空间段特征和控制段能力共同驱动的重要星座性能指标。因此,北斗系统的以下特性会显著影响其SISRE行为。首先,它的空间部分由MEO、IGSO和GEO卫星组成,其轨道运动可预测性不同。其次,2代北斗系统与3代北斗系统的卫星时钟稳定性差异显著。此外,广播轨道和时钟参数分别由定轨和时间同步(OD & TS)和双向卫星时频转移(TWSTFT)来确定,弱化了轨道误差与时钟误差的相关性。此外,3代BDS利用卫星间链路(ISL)来缓解有限地面站带来的挑战,从而提高了相关的SIS精度。
随着北斗系统的成熟,人们越来越希望将其与其它星座结合起来,以支持航空等关键安全应用。实现这一目标的前提是对导航完好性进行适当的量化。完好性衡量的是对导航信息正确性的信任度,长期以来一直被视为航空领域的一项关键性能指标。航空界现在正在追求先进的接收器自主完好性监测(ARAIM),以支持飞机的精确进近程序。为了保证导航的完好性,ARAIM要求地面监测站通过完好性支持信息(ISM)向飞机提供一些与完好性相关的参数。
用户测距精度(URA)和先验故障概率是ISM中两个重要的完好性参数,它们分别捕获了正常和异常的SISRE行为。作为推进北斗系统在民用航空领域发展的关键一步,中国一直致力于国际民用航空组织(ICAO)下北斗系统标准的制定,包括这两个方面的承诺。预计到2020年底,北斗系统将被纳入国际民用航空组织(ICAO)的标准和推荐操作规程(SARP)。
本文旨在对2代北斗和3代北斗的ISM参数进行初步估计。之前已经有一些关于GPS、GLONASS和Galileo的SISRE特征化的研究。Heng等人研究了2008年至2010年GPS的SIS性能,重点研究了名义误差行为。随后,对2000至2010年的GPS SIS异常进行了研究,比较了广播星历和精密星历。ARAIM提出后,对GPS的ISM参数进行了进一步的估计和验证,并对GLONASS和Galileo进行了类似的分析。Montenbruck等人对2013/2014年12个月期间所有可用星座的名义SISRE进行了一致的分析。这项研究在2017年进行了扩展,分析了更多特定星座的SISRE评价标准。对于北斗二代系统,已有研究对其名义SIS行为及其异常进行了研究。据我们所知,很少有研究从完好性的角度来描述北斗三代卫星的SISRE,尽管有一些对其SIS准确性的初步评估。
对于以往评价北斗二代卫星系统的研究,其相关结果不能用于支持未来ARAIM的采用。这是因为,首先,他们通过仅仅超出核心误差分布(即68%)来评估URA,这可能导致过度乐观的估计。其次,MTTN是描述平均故障持续时间的指标,但该指标是确定故障概率的重要指标。第三,SIS故障定义缺失或与航空安全标准不一致。为此,本文根据这些安全标准,提出了一种新的SISRE评价方案,并利用该方案对北斗系统的SIS性能进行了表征。
本文的其余部分组织如下。第2节介绍了数据集和SISRE计算过程。第3节介绍SIS异常的定义和故障概率确定的基本原理。然后,第4节描述了分析名义SIS性能的方法。第5节研究北斗系统的SIS行为。最后,第6节得出结论。
2 数据集和SISRE评价方法
2.1 数据集和数据清理
本文利用北斗卫星导航系统的历史广播星历表和精密星历表进行了研究。北斗二代的性能评估将从2016年持续到2020年中期(6月21日),为期4.5年。由于北斗三代精准产品有限,对北斗三代的分析仅涉及2019年开始的近1.5年数据。
国际GNSS服务(IGS)多GNSS实验(MGEX)通过合并来自全球GNSS跟踪站的观测数据,提供每日综合广播星历表(BCE)。该产品被称为BRDM,在分析期间表现出满意的连续性,因此在本研究中被用作BCE的主要数据源。此外,我们还使用了两款BCE产品进行数据扩展:一款来自中国科学院测试评估研究中心(TARC),另一款来自中国科学院精密测量科学与技术创新研究院(APM)。
完好性检查是一个重要的预处理步骤,可以从原始记录中删除数据记录错误,这是通过多数表决方法实现的。然而,这种方法可能有偏差,因为误差模式对监测站使用的硬件和软件高度敏感。本文主要采用BRDM产品进行分析,该产品可以通过以下数据清理策略克服这一缺点:首先,它进行最小有效位恢复,转换回广播位,然后去除由于四舍五入和截断而导致的错误数字;第二,对不完整的记录进行隔离;最后,如果不能明确判断同一时期的不同记录的正确性,则将它们全部保留在最终文件中。
为了进行可靠的SISRE评估,我们还需要确定在特定时期导航用户实际上可以使用哪些星历。为此,BCE产品提供消息的传输时间( t t m t_{tm} ttm),以表示跟踪站首次接收星历的时间。有了这个参数,星历选择过程如下:对于给定的历元 k k k,应该选择最小化 ( t t m − t ) (t_{tm}-t) (ttm−t),条件为 ( t t m − t ) ≥ 0 (t_{tm}-t)\geq 0 (ttm−t)≥0。然而,这种策略并不适合于完好性评估,因为它没有考虑不正确的记录。在这项工作中,我们提出了一个新的策略,应用以下标准:
- 一般情况下,每BDT小时开始更新轨道参数,星历参考时 ( t o e ) (t_{oe}) (toe)为积分点。如果轨道参数发生变化, t o e t_{oe} toe的值将发生变化。在异常情况下,参数可在非整点处更新,且 t o e t_{oe} toe的值也会随之改变。这些规则也适用于时钟校正参数。
- 卫星的运行状况标志可以随时更新,这不会影响 t o e t_{oe} toe和 t o c t_{oc} toc的值,后者是时钟参数参考时间。
根据上述标准,可以判断给定历元是否存在不正确的记录。如果证明存在错误记录,则使用后验方法来识别正确信息:使用不同的记录分别导出多组轨道和时钟参数,并将与精密产品最一致的记录视为正确记录。这种方法最初是可以接受的,因为一个故障星历表(即卫星广播不准确的信息)在受到随机记录误差的干扰后,不太可能碰巧与精密星历表一致。无论如何,请注意,这种方法可能导致选择偏见,可能隐藏真正的故障。一个可靠的方法不应该依赖于精密的星历表,这将在未来进一步研究。
在选择星历表时,我们还考虑了适用性区间,应用以下规则:要使用的星历表应是最小 ( t o e − t ) (t_{oe}-t) (toe−t)取值范围为 0 ≤ ( t o e − t ) ≤ 1 0\leq(t_{oe}-t)\leq 1 0≤(toe−t)≤1小时。如果没有满足此条件的正确记录,则应将历元标记为“无BCE”。为了揭示缺失BCE的可能原因,并证明上述规则的合理性,我们提供以下进一步的分析。
通常,广播星历在每个BDT小时开始时更新,而它在数据集中会消失几个小时。缺失可能是由于(a)卫星遇到信号中断(即信号传输停止),(b)跟踪站未能记录该电文或BCE产品未能恢复该电文,或©导航电文没有正常更新。我们利用MGEX监测站的原始观测文件,在星历表不存在的情况下,对伪距可用性进行判断,以初步确定每条信息缺失的原因。结果表明,大多数缺失的BCE可能是由卫星信号中断造成的,因为伪距在这段时间内也不可用。然而,对于2017年年中之前出现的几次缺失,情况并非如此。在目前阶段,我们无法明确地找到这些缺失背后的原因,我们将进行更全面的分析来解释未来的每一次缺失。
本研究将BDS星历表的应用间隔设为1小时。这是合理的,因为,如上所述,缺失的BCE主要是由信号中断造成的。此外,在BDT开始时没有更新星历也是不正常的。因此,建议在安全关键应用中不应使用过期的星历表。这将潜在地降低完好性风险,但代价是略微增加连续性风险。
BDS的精密星历表(PCE)通常由几个MGEX分析中心(AC)生成。在本报告所述期间,两家分析中心WHU和GFZ持续提供所有BDS-2卫星的最终PCE。在本研究中,WHU产品主要用于北斗二号系统SIS性能评估,而GFZ产品则作为其短暂中断时的备份。对于北斗三号系统,只有WHU能够在分析期内持续提供最终的PCE。在本工作中,精确产品的采样间隔为15分钟。对于一个历元,如果相关的精密轨道或时钟信息不存在或无效,则认为卫星的PCE产品是无效的。当两种产品同时失效时,标记为“无PCE”。附录A对缺失的PCE进行了进一步的分析,包括其原因和对评价的潜在影响。
图1和图2显示了北斗二号和北斗三号各卫星的数据状况。由于数据缺失量大,本研究不评C03/C17、C16、C18和C31-C37卫星的完好性性能。缺少精密的产品可能是由于MGEX对新卫星的观测可能有限。而一些卫星(如C03/C17)持续没有BCE,可能是由于以下原因之一:(a)MGEX监测站没有跟踪标称星座以外新发射的卫星和实验卫星(如C17、C18、C31),或(b)这些卫星没有广播开放服务导航电文。在后一种情况下,由于卫星不广播导航信息,导航解决方案不会受到影响,因此对完好性分析的影响较小。此外,名义星座以外的卫星不应用于安全关键应用,这是有道理的。考虑到C13/C15在发射后的前几个月卫星本身和精密产品的稳定性可能较差,我们也抛弃了2017年之前的观测数据。
对于其余的卫星,图3和图4显示了它们的数据不可用百分比的直接视图。研究结果表明,尽管在数据增强方面做了很多努力,但BCE和PCE产品缺失的比例相对较大。这将对北斗系统完好性性能评估产生负面影响。值得注意的是,以下分析仅能粗略捕捉北斗卫星导航系统SISRE的特征,在今后的工作中,我们将对每一个缺失进行更严格的评价。
精密产品必须比BCE精确得多才能作为SISRE评价的参考。对于BDS-2,已有研究表明利用精密星历表进行SISRE评价是可行的。对于北斗三号系统,部分卫星(包括C19 ~ C22和C29 ~ C30)的精密产品达到了7cm的径向轨道精度,而其它卫星由于跟踪数据有限,产品质量可能较差。因此,只有这6颗卫星将参与北斗三号系统组合卫星系统的初步评估。
2.2 时间,坐标和修正
由于BCE和PCE指的是不同的时间和坐标系统,因此必须充分注意以保证比较的一致性。除了时间和坐标系对齐外,在数据预处理过程中还需要进行一些额外的修正。
北斗系统BCE参考北斗时标,PCE参考GPS时标。本研究选取GPST作为基本时间尺度,对广播星历表采用14秒的BDT-GPST时间偏移。GPST与BDT的同步误差约为50ns,在与精密轨道比较时可以忽略。
广播轨道和精密轨道分别在CGCS2000和ITRF2008中规定。然而,两坐标系通常被认为在几厘米水平上一致。由于这个差异远低于BCE的不确定性,在接下来的分析中可以忽略。值得一提的是,BDS和GPS采用不同的地心引力常数和地球自转速率,不正确的替换可能会导致高达数米的轨道误差。
卫星相位中心偏移量(PCO)也显著影响卫星相位中心评估,该评估描述了卫星天线相位中心(APC)相对于其质心(CoM)的位置。PCE通常提供CoM轨道位置和APC时钟偏置,而BCE导出的轨道和时钟参数都指APC。例外情况是,北斗二号卫星的广播轨道参考点为2017年17日前的CoM,此后改为B3I信号的APC。因此,对当天以后的广播轨道和精密轨道进行比较时,应采用PCO改正。
BDS-2和BDS-3卫星的PCO值一般在卫星固定坐标系下提供:原点是卫星的CoM,z轴指向地球中心,y轴对应于z轴与卫星-太阳矢量的交叉,x轴完成了右手系统。不同的MGEX AC采用不同的PCO。对于BDS-2和BDS-3,WHU在GPS第2072周之前使用了制造商提供的PCO,并一直采用igs14.atx中包含的IGS官方值。与此同时,GFZ一直使用欧洲航天局(ESA)估算的BDS-2 PCO值。地球中心固定坐标系(ECEF)的广播轨道误差,
[
Δ
x
Δ
y
Δ
z
]
T
[\Delta x\ \Delta y \ \Delta z]^T
[Δx Δy Δz]T,为:
[
Δ
x
Δ
y
Δ
z
]
=
[
x
y
z
]
b
−
(
[
x
y
z
]
p
−
A
S
E
⋅
[
d
x
d
y
d
z
]
P
C
O
)
(1)
\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z\end{bmatrix}=\begin{bmatrix} x\\ y \\ z \end{bmatrix}_b-\Bigg(\begin{bmatrix}x \\ y \\ z \end{bmatrix}_p-A_S^E\cdot \begin{bmatrix} dx \\ dy \\ dz\end{bmatrix}_{PCO}\Bigg) \tag{1}
⎣⎡ΔxΔyΔz⎦⎤=⎣⎡xyz⎦⎤b−(⎣⎡xyz⎦⎤p−ASE⋅⎣⎡dxdydz⎦⎤PCO)(1)
其中
A
S
E
A_S^E
ASE指卫星固定坐标系到ECEF转换的姿态矩阵;
d
x
dx
dx、
d
y
dy
dy和
d
z
dz
dz是PCO;下标
b
b
b和
p
p
p分别表示BCE和PCE。在这项工作中,
A
S
E
A_S^E
ASE是通过假设卫星采用名义上的偏航转向姿态模式来计算的,尽管卫星有时会切换到轨道正常姿态模式。这是可以接受的,因为对于地球上的任何一点,采用不正确的姿态模式只能导致最多15厘米的投影距离误差。
BDS第
i
i
i颗卫星的广播时钟偏置
T
b
i
T_b^i
Tbi指的是B3I信号的APC,而精密时钟偏置
T
p
i
T_p^i
Tpi指的是双频无电离层(IF)组合的等效APC。因此,时间组延迟(TGD)校正
T
G
D
i
T_{GD}^i
TGDi应应用于广播时钟偏置,以便与紧密产品进行比较。在BCE中,B1I/B3I和B2I/B3I的TGD修正分别见
T
G
D
1
i
T_{GD1}^i
TGD1i和
T
G
D
2
i
T_{GD2}^i
TGD2i。请注意,广播TGD的误差导致了广播时钟误差,其对用户测距误差的影响在上述过程中已经考虑在内。因此,我们不使用差分码偏差(DCB)额外计算TGD误差,这对于评估上述双频用户是合理的。然而,在未来的工作中,我们将像Martini、Sgammini和Boyero那样评估BDS TGD精度,以支持使用单频或其它双频组合的用户。表1显示了不同精密产品的相关TGD校正。注意,由于在PCE中相对论效应没有被修正,修正也不应该应用于广播时钟偏差。因此,广播和精密时钟的差值如下所示:
δ
T
b
i
=
T
b
i
−
T
G
D
i
−
T
p
i
(2)
\delta T_b^i=T_b^i-T_{GD}^i-T_p^i \tag{2}
δTbi=Tbi−TGDi−Tpi(2)
此外,在PCE的参考时钟中还存在时变的且和卫星无关的时间尺度偏差
μ
\mu
μ(相对于GPST)。因此,在历元
k
k
k,
δ
T
b
i
\delta T_b^i
δTbi可以建模为:
δ
T
b
i
(
k
)
=
Δ
T
i
(
k
)
+
μ
(
k
)
(3)
\delta T_b^i(k)=\Delta T^i(k)+\mu(k) \tag{3}
δTbi(k)=ΔTi(k)+μ(k)(3)
其中
Δ
T
i
(
k
)
\Delta T^i(k)
ΔTi(k)指对于卫星
i
i
i的广播时钟误差。为了获得
Δ
T
i
(
k
)
\Delta T^{i}(k)
ΔTi(k),偏差项
μ
(
k
)
\mu(k)
μ(k)需要被估计。我们采用鲁棒的迭代加权平均方法来实现估计,因为它对潜在的时钟异常有良好的容忍度。
2.3 星历状态:数据年限、URA索引和健康标志
SIS的准确性通常受到轨道和时钟信息生成后所经过的时间的影响。广播星历表使用数据星历表年限(AODE)和数据时钟年限(AODC)来指示此导航消息的最新时间。表2和表3汇总了北斗卫星不同AODE和AODC值在分析期内的百分比。结果表明,AODC值与AODE值存在明显差异。这是由于时钟信息的生成与定轨过程是分开的。数据还显示,由于有限的地面跟踪和上传站,BDS-2 MEO具有最长的AOD。至于北斗三号系统,AOD时间大多短于一个小时,这突出了ISL的好处。
URA Index (URAI)是URA的一个下标,它提供了SIS引起的伪距误差的一个保守的均方根估计值。URAI和URA之间的部分关系如下所示,完整版本见接口控制文件(ICD):
U
R
A
I
=
0
,
0.00
m
<
U
R
A
≤
2.40
m
URAI = 0,\ 0.00 m<URA≤2.40 m
URAI=0, 0.00m<URA≤2.40m;
U
R
A
I
=
1
,
2.40
m
<
U
R
A
≤
3.40
m
URAI = 1, \ 2.40m<URA≤3.40 m
URAI=1, 2.40m<URA≤3.40m;
U
R
A
I
=
2
,
3.40
m
<
U
R
A
≤
4.85
m
URAI = 2,\ 3.40 m < URA≤4.85 m
URAI=2, 3.40m<URA≤4.85m;
U
R
A
I
>
2
,
U
R
A
>
4.85
m
URAI > 2, \ URA> 4.85m
URAI>2, URA>4.85m。表4显示,URAI值几乎总是等于2,即广播URA通常包络在4.85米。
出于安全考虑,广播星历表使用健康标志来显示卫星的健康状态。当此标志设置为1时,关联卫星被视为不正常并发生停机。表5显示了不同类型卫星的不健康的星历表的百分比。研究结果表明,北斗二号卫星是最常发生故障的系统。
在这项工作中,我们使用所有健康星历表进行SIS性能评估,而不使用AODC、AODE和URAI对数据进行分区。因此,我们可以为每个卫星获得一个唯一的包络URA,它可以覆盖所有名义情况。然而,应该指出的是,这可能导致对某些AOD值的乐观估计,因为SIS精度可能随着AOD而变化。附录B对这一关系进行了定量分析,结果表明,北斗2号卫星(主要是MEO)使用AOD的精度差异较大,但其它卫星的差异不大。分析还表明,由AOD划分的分区可能会失败,因为某些AOD的样本不足以具有统计意义。
2.4 空间信号测距误差(SISRE)计算
空间信号误差(SISE)是一种主要的伪距误差预算。在局部轨道坐标系和时钟误差项
Δ
T
\Delta T
ΔT,通常将其近似为轨道误差矢量
[
Δ
e
R
Δ
e
A
Δ
e
C
]
T
[\Delta e_R\ \Delta e_A\ \Delta e_C]^T
[ΔeR ΔeA ΔeC]T。本文中忽略了天线偏置和信号变形等对SISRE的影响,但将在今后的工作中将考虑它们的影响。径向®、沿轨(A)和交叉轨©的轨道误差计算为
[
Δ
e
R
Δ
e
A
Δ
e
C
]
T
=
A
E
O
⋅
[
Δ
x
Δ
y
Δ
z
]
T
(4)
[\Delta e_R\ \Delta e_A \ \Delta e_C]^T=A_E^O\cdot [\Delta x\ \Delta y \ \Delta z]^T \tag{4}
[ΔeR ΔeA ΔeC]T=AEO⋅[Δx Δy Δz]T(4)
其中
[
Δ
x
Δ
y
Δ
z
]
T
[\Delta x\ \Delta y \ \Delta z]^T
[Δx Δy Δz]T是ECEF轨道误差向量;
A
E
O
A_E^O
AEO是从ECEF到局部轨道坐标系的变换矩阵。对于给定的在ECEF中的卫星位置
r
\pmb{r}
rrr和惯性速度
v
\pmb{v}
vvv,变换矩阵可确定为:
A
E
O
=
[
r
∣
r
∣
r
×
v
∣
r
×
v
∣
×
r
∣
r
∣
r
×
v
∣
r
×
v
∣
]
T
(5)
A_E^O=\bigg[\frac{\pmb{r}}{|\pmb{r}|}\ \frac{\pmb{r}\times\pmb{v}}{|\pmb{r}\times \pmb{v}|} \times \frac{\pmb{r}}{|\pmb{r}|} \ \frac{\pmb{r}\times\pmb{v}}{|\pmb{r}\times \pmb{v}|}\bigg]^T \tag{5}
AEO=[∣rrr∣rrr ∣rrr×vvv∣rrr×vvv×∣rrr∣rrr ∣rrr×vvv∣rrr×vvv]T(5)
为了揭示SISE对导航用户的影响,通过将SISE投影到用户视线(LOS)方向来计算SIS[用户]测距误差(SISRE或SIS URE)。瞬时URE(IURE)表示给定历元的等效伪距误差(即SIS URE)。图5给出了IURE计算的图形说明。如图所示,我们采用了一个地心坐标系(O-XYZ),它与局部轨道坐标系(S- RAC)轴线对齐。因此,对于ECEF, O-XYZ坐标系随卫星运动而变化。对于距离地球中心
d
d
d的用户,IURE计算为
I
U
R
E
=
−
[
Δ
e
R
Δ
e
A
Δ
e
C
]
1
−
κ
2
−
2
κ
s
i
n
(
θ
)
[
κ
−
s
i
n
(
θ
)
c
o
s
(
θ
)
c
o
s
(
ϕ
)
c
o
s
(
θ
)
s
i
n
(
ϕ
)
]
+
Δ
T
(6)
IURE=-\frac{[\Delta e_R\ \Delta e_A \ \Delta e_C]}{\sqrt{1-\kappa^2-2\kappa sin(\theta)}}\begin{bmatrix} \kappa-sin(\theta) \\ cos(\theta)cos(\phi)\\ cos(\theta)sin(\phi) \end{bmatrix}+\Delta T \tag{6}
IURE=−1−κ2−2κsin(θ)[ΔeR ΔeA ΔeC]⎣⎡κ−sin(θ)cos(θ)cos(ϕ)cos(θ)sin(ϕ)⎦⎤+ΔT(6)
其中用户位置由纬度
θ
\theta
θ决定(xy平面上);经度
ϕ
\phi
ϕ(在xy平面上相对于x轴测量的);距离
d
d
d;
κ
=
∣
r
∣
/
d
\kappa=|\pmb{r}|/d
κ=∣rrr∣/d指卫星与地球中心之间的标准化距离。如果接收机掩角为零,则卫星覆盖足迹的最小纬度
θ
m
i
n
\theta_{min}
θmin可计算为
θ
m
i
n
=
s
i
n
−
1
(
1
/
κ
)
\theta_{min}=sin^{-1}(1/\kappa)
θmin=sin−1(1/κ)。作为提醒,
θ
\theta
θ和
ϕ
\phi
ϕ在O-XYZ坐标系中计算,而不是ECEF。
为了捕获用户位置上的IURE变化,有一些常用的指标用于全局SIS URE统计描述,例如,全球平均URE、最坏情况URE(或最大预测误差,MPE)和用户预测误差(UPE)。它们的定义详细说明如下。
全球平均URE描述卫星覆盖范围内地球表面的平均URE。它已被广泛应用于各种GNSS性能标准,如GPS定位服务性能标准。然而,这个标准在安全关键型应用中是不可接受的,因为它不能在所有可能的情况下安全地包络误差。
最坏情况下的URE,也称为MPE,表示在特定时间内,一个用户在卫星轨道上的最大IURE。该指标常用于SIS完好性性能的评价。然而,它并不适合于确定包络URA。这是因为,首先,它可能导致一个过于保守的估计,因为不可能假设用户总是经历最大的IURE。其次,即使所有的轨道误差和时钟误差都是高斯分布,MPE分布也不是高斯分布。更具体地说,这个分布是双峰的,在零处有一个凹口。
UPE是将卫星轨道和时钟误差投影到特定的定时用户位置上。UPE计算时选择全局分布的大量用户。每个健康的卫星对任何给定历元的许多但不是所有用户都可见。因此,与MPE不同的是,每个历元每个卫星都有多个UPE值(每个用户都有一个UPE值)。
除了上述指标外,本文还提出了一种新的指标,用户网格URE,用来表征SISRE。如图5所示,用户的位置由纬度 θ \theta θ和经度 ϕ \phi ϕ确定,卫星的覆盖区域描述为 θ m i n ≤ θ ≤ 90 ° \theta_{min}\leq \theta \leq90° θmin≤θ≤90°且 0 ° ≤ ϕ ≤ 360 ° 0°\leq \phi \leq360° 0°≤ϕ≤360°。我们选择了一个均匀分布在该区域的用户网格,以提供足够的覆盖密度。通过计算每个用户的IURE得到卫星的用户网格URE。与UPE类似,每个历元每个卫星都将有多个用户网格URE值。这两个指标的主要区别在于用户选择策略。在UPE方法中,用户固定在地球表面,归一化用户卫星(即LOS)向量随卫星运动而变化。相反,用户网格URE通过改变每个用户在ECEF坐标系中的位置来保持其LOS向量不变。
在本研究中,我们使用用户网格的URE来评估名义上的SISRE性能,并确定每个监测卫星的包络URA。这个指标可以提供一个安全的估计,因为它涵盖了用户可能遇到的所有可能的情况,包括最坏的情况。与MPE相比,该度量具有显著的优势:如果轨道和时钟误差均为高斯分布,则每个用户的误差均为高斯分布。这可以由公式(6)证明:用户的IURE是这些误差分量的线性时不变组合。它也比UPE显示了一个优势:因为分析的卫星总是对每个选定的用户可见,与每个用户相关的样本数量完全等于有效历元的数量。用户网格URE的一个缺点是在以卡方形式评估SISRE时不方便,但这超出了本工作的范围。