论文阅读《Characterizing BDS signal-in-space performance from integrity perspective》2

3 异常:检测和概率确定

3.1 SIS故障的定义

SIS异常(即故障)主要是由不正确的导航数据、轨道机动、轨道异常干扰、时钟跳变、时钟漂移等异常事件引起的。在航空应用中,SIS故障可能会导致较大的导航误差,对导航安全构成重大威胁。

在本研究中,我们采用了两种不同的SIS故障定义,分别定义为定义a和定义b。前者是考虑到故障形状的新定义,后者是Walter等人推荐的快照式方法。这两种定义都依赖于一个预定义的阈值,阈值确定的基本原理如下所示。在以往的研究中,阈值通常为 4.42 × σ ˉ U R A 4.42\times \bar{\sigma}_{URA} 4.42×σˉURA,其中 σ ˉ U R A \bar{\sigma}_{URA} σˉURA是广播的URA。然而,我们建议选择一套阈值,原因如下:首先,我们不确定广播式的URA是否能恰当地描述真实的误差分布;其次,该阈值是一个重要的参数,对估计的URA和故障概率有显著影响;最后,该方法比单纯采用一个阈值可以提供SISRE的更全面的表征。

下面详细说明这两种定义。在定义a中,SIS故障被定义为SIS URE中出现异常值或趋势时发生的事件。异常值是指超过阈值的IURE。当(1)几个连续时间点的IURE数据形成斜坡、正弦或任何非随机形状的曲线,并且(2)这条曲线至少包含一个异常值时,就可以说存在异常趋势。在定义b中,当IURE大于阈值时,就会发生SIS故障。

图6通过模拟斜坡故障显示了这两种定义之间的差异。从图中可以看出,在这两种定义下,故障持续时间是不同的。在这一故障开始,URE数量级低于阈值,但有明显的异常趋势。根据定义a,这些样本被视为有故障的,而根据定义b,它们被视为无故障的。因此,在定义a下,故障持续时间延长,因此,故障概率增加,这是潜在减少URA的权衡。

在这里插入图片描述

图6 SIS故障定义的图解

以前的研究通常采用定义b,因为(1)它避免了任何关于故障是否存在的模糊性,并保持与GPS性能标准的一致性,(2)低于阈值段对用户的威胁很小。然而,新的定义也是合理的和有意义的,尽管它有点模糊。这是因为,首先,在确定ISM参数时,将样本视为有故障的是安全的(即保守的)。这实际上是URA和故障概率之间的权衡。其次,作为一种替代,该定义可以拓宽对“有故障”样本和“名义”样本之间区别的理解,这将在第4.2节中进一步说明。

3.2 异常检测

本小节介绍如何检测观测数据中的异常。在这项任务中使用了最坏情况的URE (MPE)指标,因为在与完好性相关的应用程序中,最脆弱的用户必须得到保护。根据定义b实现异常检测很简单。然而,在定义a下很难明确地执行这项任务,因为很难准确地识别属于某个故障的所有样本。在本文中,我们提出了一个简单的经验方案来粗略估计故障的开始和结束时间,如下所示。这个方案是初步的,应该作为一个例子。由于最后一步是手动操作,在ISM生成器(ISMG)中无法实现自动化。在未来的工作中,将对其进行改进,以支持自主和可靠的异常检测。

  1. 根据定义b检测故障,记录故障发生的时间。
  2. 如果故障持续时间超过45分钟(可变),且第一个或最后一个数据与阈值相差小于10米(可变),则转步骤(3);否则将该故障视为异常值或阶跃故障。
  3. 利用周围数据绘制该故障的曲线,并根据曲线手动估计其起止时间。

3.3 故障概率的确定

Walter等人提出了先验故障概率的精确定义,并将其用于GPS和GLONSS的评估。这些定义在本研究中也被采用,并简要说明如下。

根据ARAIM基线算法,考虑了两类不重叠的SIS故障概率,分别考虑了卫星故障和星座故障。卫星故障的概率, P s a t P_{sat} Psat,定义为任意给定时间,单个卫星处于故障状态的概率。星座故障的概率, P c o n s t P_{const} Pconst,为星座内多颗卫星因共同原因同时发生故障的概率。

故障率 R R R定义为一个健康的卫星或星座在一段时间内发生故障的概率。让 N F N_F NF为总时间间隔 T t T_t Tt内发生故障的次数,计算 R R R等价于在给定 N F N_F NF T t T_t Tt情况下推导 R R R的期望值,即 E ( R N F ) E(RN_F) E(RNF)。walter等人建立了严格的推导,列出了关键假设,并仔细论证了所有步骤。他们检查了与 R m R^m Rm成比例的 R R R的先验概率,其中 m m m是一个指数。据此, R ( R ^ ) R(\hat{R}) R(R^)的最终估计值为
R ^ = E ( R N F ) = N F + m + 1 T t = N F + 1 / 2 T t (7) \hat{R}=E(RN_F)=\frac{N_F+m+1}{T_t}=\frac{N_F+1/2}{T_t} \tag{7} R^=E(RNF)=TtNF+m+1=TtNF+1/2(7)

这个公式的最终结果是 m = − 1 / 2 m=-1/2 m=1/2,Walter等人给出了这个选择的理由。简而言之, m = − 1 ∕ 2 m=−1∕2 m=12的选择确保了评估结果在不同参数化下是一致的(即,故障率, R R R,相对于故障间隔时间, 1 / R 1/ R 1/R)。在本文中,我们将直接使用公式(7)进行故障率评估,尽管这不是唯一的方法。

故障概率 P P P与故障率 R R R之间的关系为:
P = M T T N × R (8) P=MTTN\times R \tag{8} P=MTTN×R(8)
MTTN为预期平均故障持续时间。当故障被修正或广播星历表通知用户时,就称故障结束。MTTN是反映控制段监测和修复SIS故障能力的重要指标。由于CSNO尚未对该参数提供任何承诺,在这项工作中,我们根据历史观测初步估计了MTTN值。

4 标称性能:SIS分析方法

4.1 无故障的SIS定义和URA定义

第4节着重于用无故障SIS方法评估标称SIS性能。如果IURE没有被识别为故障,那么它是在名义条件下。因此,故障的定义和阈值将直接影响评价。评估的目的是正确估计每颗监测卫星的URA值。URA提供了SIS URE的不确定性的保守估计(即完好性包络)。虽然该参数在导航消息中可用,但在提供给航空用户之前,必须由航空导航服务提供商(ANSP)验证或调整(如有必要)。为此,第4.2节介绍了根据观测数据估计有安全保障的URA的方法。

4.2 包络SIS URE

在ARAIM算法中,距离误差通常用高斯模型来描述。然而,由于复杂的干扰,实际的误差分布通常不是理想的高斯分布。幸运的是,各种包络技术已经被提出,以推导出观测的保守的高斯分布。包络的定义可以用数学方法描述如下:
P ( X o b ≤ x ) ≥ P ( X ≤ x ) ,   ∀ x < x ˉ P ( X o b ≤ x ) ≤ P ( X ≤ x ) ,   ∀ x > x ˉ (9) \begin{matrix} P(X_{ob}\leq x) \geq P(X\leq x),\ \forall x < \bar{x} \\ P(X_{ob} \leq x) \leq P(X\leq x), \ \forall x > \bar{x} \end{matrix} \tag{9} P(Xobx)P(Xx), x<xˉP(Xobx)P(Xx), x>xˉ(9)
其中 P P P表示括号内事件发生的概率, X o b X_{ob} Xob是包络分布的随机变量, X X X实际分布的随机变量, x ˉ \bar{x} xˉ X X X的无误差值。公式(9)是累积分布函数(CDF)形式的表达式。在GNSS完好性领域中,单CDF包络、双CDF包络、两步包络和三条件包络是四种高斯包络方法。本文采用了一种独特的单CDF方法,称为折叠CDF (FCDF)。在这种方法中, x ˉ \bar{x} xˉ等于 x x x的中值,因此, P ( X ≤ x ˉ ) = 0.5 P(X\leq \bar{x})=0.5 P(Xxˉ)=0.5

使用单CDF方法进行分析是可以接受的,尽管其它三种方法在(1)避免对称性和单峰性的要求和(2)保证卷积后的保守性方面都有优势。这是因为,首先,在应用后三种方法时,包络结果可能过于保守。其次,附录C表明,对于大多数卫星,轨道和时钟误差近似符合对称和单峰分布。此外,以往对GPS的研究表明,在定位误差超过保护水平之前,测距误差不会以危险的方式卷积。在未来的工作中,我们将分析误差卷积在北斗系统中的影响,并考虑三种先进的评估方法,以获得更可靠的评估结果。

图7提供了FCDF包络方法的图形描述。在图中,实际的重尾分布是将40个点均匀分布在 ( − 6 , − 4 ] ⋂ [ 4 , 6 ) (-6,-4]\bigcap [4,6) (6,4][4,6)与高斯分布 N ( 0 , 1 2 ) \mathbb{N}(0,1^2) N(0,12) 1 0 5 10^5 105个点进行混合,包络分布为 N ( 0 , 1. 5 2 ) \mathbb{N}(0,1.5^2) N(0,1.52)。这一图形表明,仅仅是超过核心分布可能会导致估计过于乐观,同时也表明,斜坡故障的起始段可能是造成重尾的原因。

在这里插入图片描述

图7 FCDF包络概念的图形描述

如第2.4节所述,用户网格URE指标用于评估标准SIS性能。为了对卫星进行评估,我们首先选择在其覆盖足迹中均匀分布的用户网格。对于北斗系统而言,GEO和IGSO的轨道高度是35786千米,MEO的轨道高度是21528千米。因此,如果用户接近地球表面,其高度角为零,则GEO/IGSO的最小纬度 θ m i n \theta_{min} θmin为8.73°,而MEO的为13.18°。表6给出了所选用户相对于图5所示的O-XYZ坐标系的位置。这些用户被固定在这一坐标系中,以保持他们的LOS向量朝向所分析的卫星不随时间变化。提醒一下,这里对经度和纬度的定义与地理坐标系统(如WGS84)中的不同。

表6 纬度(\theta)和经度(\phi)网格用于生成用户网格

在这里插入图片描述

最后,下面的步骤显示如何确定卫星的包络URA( σ U R A \sigma_{URA} σURA)。

  1. 当存在健康BCE和有效PCE时,计算每个选定用户在每个历元的IURE。
  2. 通过比较MPE和阈值进行异常检测;然后,如果历元被标记为故障,将这个历元的所有IURE更改为 ∞ × s i g n ( M P E [ i ] ) \infty\times sign(MPE[i]) ×sign(MPE[i])
  3. 形成每个用户的IURE时间序列,以便我们可以分别评估每个用户的IURE分布。
  4. 对于每个用户,(a)估计对应的IURE时间序列的平均值,(b)去掉这个值形成零均值的IURE分布,(c)根据这个IURE分布生成一个FCDF曲线。
  5. 找到一个高斯分布 N ( 0 , σ U R A 2 ) \mathbb{N}(0,\sigma_{URA}^2) N(0,σURA2),它可以严格包络所有用户的 ∀ I U R E ∈ [ − T l , T r ] \forall IURE\in [-T_l, T_r] IURE[Tl,Tr]的FCDF曲线,其中 T l = m i n { I U R E ∣ I U R E < 0   a n d   I U R E   i s   f i n i t e } T_l=min\{IURE | IURE < 0 \ and\ IURE\ is\ finite\} Tl=min{IUREIURE<0 and IURE is finite} T r = m a x { I U R E ∣ I U R E > 0   a n d   I U R E   i s   f i n i t e } T_r=max\{IURE|IURE>0 \ and \ IURE\ is \ finite\} Tr=max{IUREIURE>0 and IURE is finite}

图8提供了C09的包络结果,以进一步说明上述方法。在该图中,每条彩色细线代表用户的IURE分布,蓝色粗线代表高斯分布的上限。在10m阈值下,定义a下的故障样本数为86,定义b下的故障样本数为41。作为一种权衡,在前一种定义下,与后一种定义相比,为评估URA而被包络的名义分布明显没有那么重尾。具体来说,定义a下 ∣ T l |T_l Tl|和 T r T_r Tr约为8米,定义b下 T l T_l Tl T r T_r Tr约为10米。在前一定义下,这导致了一个较小的包络URA,但代价是增加了故障概率。这里所展示的权衡证明了新定义(定义a)的重要性:它拓宽了对SIS故障的理解,并作为原始定义(定义b)的补充。

在这里插入图片描述

图8 在不同的故障定义下包络C09的用户网格,其中绿色阴影表示要包络的“标称”分布

5 BDS SISRE行为和讨论

5.1 案例分析

本节以提出的北斗系统SIS评价方案为例,展示了一些结果,以进一步说明相关方法,并识别北斗系统SIS的一些特殊特征。本部分是对5.2节结果的补充,在5.2节中,我们定量评估了每个被监测卫星的完好性性能。

首先,图9比较了不同类型卫星的误差行为。在这个图中,误差分布是在不移除任何样本的情况下形成的。为了看得更清楚, x x x轴限制在 ± 30 ±30 ±30米, y y y轴范围在 1 0 − 5 10^{-5} 105到1之间。需要注意的是,C21的误差均小于8米。这一数据证明了北斗三号系统的SIS精度优于北斗二号系统。结果还表明,这些误差分布(MPE除外)似乎有一个高斯核,而它们的尾部数据似乎比大多数有更大的方差。这是出现重尾现象的明确证据,这种现象在GPS和其它星座中也有报道。

在这里插入图片描述

图9 各卫星径向(R)、沿轨(A)、交叉轨(C)、时钟以及FCDF形式的最大投影误差分布

图10显示了在数据集中观察到的几种SIS故障类型的概要。故障的类型与其根本原因有关。通过对周围广播参数的分析,可以找出原因。例如图中斜坡故障是由于时钟不稳定造成的,正弦故障是由于轨道参数不正确造成的。其中,正弦波赤经率 Ω ˙ \dot{\Omega} Ω˙和正弦波对倾角 C i s C_{is} Cis的校正项不正确。

在这里插入图片描述

图10 在数据集中观察到的各种类型的SIS故障的概要

接下来,我们将以MEO中发生的SIS故障为例,说明如何在轨道上纠正故障。图11给出了相应时段内的轨道和时钟误差,表7给出了广播导航参数。如图所示,这是一个斜坡时钟故障,其数量级从一个小值增加到60米。从表中可以看出,该故障是由于不正确的时钟参数引起的。在用户收到新导航消息(表7中的第4行)通知之前,该故障已经持续了18个小时,其中运行状况标志被设置为1。注意,在这条消息中时钟校正参数没有更新,因此,AODC没有改变。故障持续时间长的原因是北斗二号地面跟踪上传站的分布有限。最后,表7显示了将新的时钟参数上传到卫星并广播给用户后,卫星从故障中恢复。

在这里插入图片描述

图11 C11(MEO)故障时的轨道和时钟误差

表7 广播时钟参数(C11, brdm2010.17n)

在这里插入图片描述
特别要注意北斗2号卫星异常SIS性能评估。由于BDS-2仅适用于亚太地区(55°S ~ 55°N, 70°E ~ 150°E),因此将不影响该地区用户的故障数据从评估中移除是合理的。在安全关键应用中,强烈建议用户在该区域以外时,使用ARAIM软件和/或接收机使北斗2号卫星失效。图12汇总了C11的所有故障数据(共45个故障),并给出了对应的子卫星点。图中有一条绿色曲线,曲线内的区域称为“暗区”。当MEO飞越该区域时,北斗2系统服务区域的所有用户都完全看不到它(用户仰角为15°)。由该图可知,该区域对应的故障数据较多,在确定故障概率、故障率和MTTN时,应将其剔除。

在这里插入图片描述

图12 C11处于故障状态下的星下点,黑色为时钟故障,红色为轨道故障,绿色曲线为暗区

5.2 北斗卫星系统故障概率及URA的初步估计

本节详细介绍了北斗卫星导航系统SISRE特性,并对不同卫星之间的SIS性能进行了比较。首先,我们提供每个卫星的URA和故障概率估计值如下。在评价中,采用定义b作为主要定义,而定义a只适用于一些两种定义可能导致URA估计差异较大的卫星。请注意,以下结果只能被视为初步结果,原因是(1) PCE和BCE相对频繁地缺席,以及(2)数据量有限。

图13-15给出了各种类型北斗二号卫星的URA( σ U R A \sigma_{URA} σURA)和故障概率的估计值。我们可以从结果中得出以下结论。首先,随着检测阈值的提高, σ U R A \sigma_{URA} σURA趋于增加,而故障概率降低。如果阈值足够大,它们的值可能会趋于稳定。此外,对于一些卫星(如C09-C11),在不同的故障定义下, σ U R A \sigma_{URA} σURA存在显著差异。这意味着这些卫星的尾端误差分布受斜坡故障的影响较大。类似地,图16显示了北斗三号卫星的监测结果。以上结论对BDS-3同样有效。请注意,这些图显示了故障定义和阈值的结果变化,但我们不知道哪一组结果可以最好地描述长期计划的行为。这仍然是未来调查的未决问题。

在这里插入图片描述

图13 定义b下BDS-2 GEO卫星的URA和故障概率(P)估计值

在这里插入图片描述

图14 BDS-2 IGSO卫星的URA和故障概率(P)估计值,其中黑色虚线表示定义a,红色实线表示定义b

在这里插入图片描述

图15 BDS-2 MEO卫星的URA和故障概率(P)估计值,其中黑色虚线表示定义a,红色实线表示定义b

在这里插入图片描述

图16 BDS-3卫星的URA和故障概率(P)估计值,其中黑色虚线表示定义a,红色实线表示定义b

然后,我们进一步比较不同卫星之间的SIS性能如下。此后,北斗2号卫星的阈值设置为10米,北斗3号卫星阈值设置为4米。请注意,虽然表4提供了广播URA,但我们没有根据它们选择阈值,因为我们不确信(1)它们能够准确地描述实际的SISRE行为(上面的结果显示它们可能过于保守),以及(2)星座服务提供商(CSP)将基于这些作出承诺(因为CSP可能以书面规范的形式作出承诺,例如,开放服务性能标准)。从图9和图a8-a9(附录C)可以看出,大多数北斗2号卫星的观测误差值大多在10米以下,大于10米的观测误差值几乎都对应某些故障事件(如斜坡故障)。当阈值为4米时,这一结论也适用于北斗三号卫星。因此,最初使用这两个阈值进行初步性能评估和比较是可以接受的。

图17显示了所有被监测卫星的URA( σ U R A \sigma_{URA} σURA)估计,图18显示了相应的故障概率。结果表明,大多数北斗2号卫星的 σ U R A \sigma_{URA} σURA在2.4~3.2米之间,除了C11卫星的 σ U R A \sigma_{URA} σURA大于3.4米。它们的故障概率也有很大的变化,从 1.5 × 1 0 − 4 1.5×10^{-4} 1.5×104(C01和C08)到 4.5 × 1 0 − 3 4.5×10^{-3} 4.5×103(C11)。请注意,这些结果是在假设任何数据中断期间没有故障的情况下得出的。鉴于卫星的性能变化很大,强烈建议在ISM中为单个卫星设置不同的值,而不是将它们合并在一起。

在这里插入图片描述

图17 各卫星的URA值,其中三角形表示定义a,圆形表示定义b

在这里插入图片描述

图18 各种卫星的故障概率,三角形表示定义a,圆表示定义b

结果表明,北斗三号卫星的SIS精度优于北斗二号卫星。对于大多数北斗三号卫星来说,如果考虑定义a,其 σ U R A \sigma_{URA} σURA约为1米。这主要得益于新的星载时钟和装备的ISL有效载荷。前者有助于提高短期时钟预测的精度,后者通过实现卫星对卫星通信和测距,减轻了地面站有限带来的挑战。

虽然图16和图18也显示了北斗三号卫星的估计故障概率,但我们对这些数字没有信心,因为一些卫星(如C20、C29和30)的故障概率受到一些长时间(如超过10小时)故障的显著影响。故障持续时间长可能与北斗三号系统正处于试验阶段有关。在这一阶段后,可以预期故障持续时间将不会这么长,而这是合理的。请注意,目前的结果可能无法提供未来BDS-3 SIS性能的完全可靠图景。这是因为,首先,在数据中断期间可能存在一些卫星故障。其次,数据量不够大,无法进行稳健的评估。星座成熟后,系统的完好性性能可能会显著提高。因此,北斗三号系统可以以比本研究结果更好的性能对SARP作出承诺是合理的。为了让ARAIM用户能够使用北斗三号系统,我们将在今后的工作中继续对北斗三号系统进行性能监测。

图19显示了每颗被监测卫星观察到的故障率。请注意,两种故障定义下的故障率完全相同,因为它们只影响故障持续时间。初步结果表明,北斗-2卫星每小时的故障率为 1.3 × 1 0 − 4 1.3×10^{-4} 1.3×104 1 0 − 3 10^{-3} 103,北斗-3卫星每小时的故障率为 4 × 1 0 − 5 4×10^{-5} 4×105(1.5年零故障)至 3.5 × 1 0 − 4 3.5×10^{-4} 3.5×104(1.5年4故障)。此外,BDS-2和BDS-3数据集不存在并发故障,因此没有观测到星座故障。因此,根据公式(7),星座故障率初步设定为:北斗-2系统故障率 1.3 × 1 0 − 5 1.3×10^{-5} 1.3×105/小时,北斗-3系统故障率 4 × 1 0 − 5 4×10^{-5} 4×105/小时。由于星座故障的MTTN是未知的,我们无法提供星座故障概率的估计。该结果是假设缺失数据中不存在星座故障而得到的。我们将在未来的工作中检查这个假设并更新结果(如果需要的话)。

在这里插入图片描述

图19 BDS-2和BDS-3卫星故障率估计

由于北斗三号系统数据量有限,在接下来的分析中,我们将只关注北斗二号系统。MTTN是导航系统的一个重要性能指标,它反映了导航系统对SIS故障的响应速度。图20给出了每颗北斗-2卫星的MTTN的初步估计。这里的MTTN值简单地通过计算平均故障持续时间来估计。可以看到,对于大多数卫星,根据定义b, MTTN似乎低于2.5小时,根据定义a,则低于3小时。然而,在不同的卫星之间,这个数字也有明显的变化:MTTN30分钟(C01)到大约4小时(C11)。从整体上看,GEO卫星的MTTN最低,MEO卫星的MTTN最长。从图中还可以看出,MTTN受故障定义的影响,这是因为在定义a下,故障持续时间得到了扩展。

在这里插入图片描述

图20 BDS-2卫星MTTN估计,三角形为定义a,圆为定义b

然而,由于以下原因,上述MTTN估计方法可能无法提供足够精度的可靠估计。首先,观测到的故障数量不够大,无法准确捕捉SIS故障特征。其次,计算依赖的假设是(a)故障持续时间至少为15分钟,(b)故障发生在一个时间间隔内不影响任何其它时间间隔内发生的故障,但它们可能都不是真的。此外,与地面监测站的可见性相比,MEO的单个故障持续时间受故障发生时间的影响较大。因此,图20中的结果是初步的,将来应该进一步研究。完好性失效模式与影响分析(IFMEA)是帮助评估MTTN的有效方法,旨在识别卫星失效模式,确定其发生的概率,并分析其对用户的影响。因此,我们对北斗二号的故障特征进行初步评估。在今后的工作中,将进一步努力完成北斗系统的IFMEA,并根据分析结果进一步评估MTTN。

图21总结了观测到的BDS-2 SIS故障的来源,图22给出了其最大幅值的相对频率直方图。结果表明,超过70%的SIS故障是由时钟组件引起的。MEO的时钟异常率甚至超过88%,而GEO和IGSO的整体时钟异常率仅为50%左右。从故障的大小来看,从图22可以看出,大部分故障的大小在100米以下,但大故障(1公里以上)也占很大比例。

在这里插入图片描述

图21 北斗二号卫星的故障源,底部为时钟,顶部为轨道

在这里插入图片描述

图22 BDS-2 SIS故障最大幅值的相对频率直方图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值