【顶级EI复现】分布式电源选址定容的多目标优化算法(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要:在综合考虑网损、电压质量和电流质量3个指标的基础上,建立了分布式电源选址定容的多目标决策模型,并提出了一种改进多目标微分进化算法(improved differential evolution for multiobjective optimization,IDEMO)。该算法引入混沌搜索策略以提高初始种群利用率,采用控制参数调整策略以克服算法对控制参数依赖性强的缺点,利用动态拥挤距离排序策略使得帕累托解集分布更加均匀,从而为最终决策提供了优良的候选方案。以上述算法求得的帕累托最优解集为决策矩阵,使用基于熵的序数偏好方法对最优解集进行排序,得到最终决策方案。在IEEE-33节点系统上对所提方法进行了测试,并从外部解、C指标和S指标3方面与其他3种多目标优化算法进行了比较,验证了所提算法具有良好的搜索性能。最后评价了所选方案的有效性。

关键词:

分布式电源;选址定容;多目标微分进化算法;帕累托解集;多目标决策方法;

在全面评估网损、电压稳定性及电流质量这三个关键因素后,我们构建了分布式电源选址与容量确定的多目标决策框架,并创新性地提出了一种改进的多目标微分进化算法(简称IDEMO)。此算法融入了混沌搜索机制,旨在提升初始种群的利用效率;同时,通过调整控制参数的策略,有效降低了算法对参数的过度依赖;再者,动态拥挤距离排序的引入,使得帕累托最优解集的分布更为均衡,为最终决策提供了一系列高质量的备选方案。随后,我们利用基于熵的序数偏好排序法,对IDEMO算法得出的帕累托最优解集进行了进一步筛选,从而确定了最终的决策方案。

为了验证所提方法的有效性,我们在IEEE-33节点系统上进行了测试,并从外部解的质量、C指标以及S指标三个维度,与其他三种多目标优化算法进行了对比分析,结果显示IDEMO算法展现出了卓越的搜索性能。最后,我们还对所选方案的实际效果进行了评估。

分布式电源(distributed generation,DG)选址定 容问题是在满足给定的投资及系统运行等约束条 件下,对 DG 的布点和容量进行优化,使得效益最 大化。随着对电力系统运行要求的提高,DG 选址定容问题已经从仅考虑网损最小的单目标问题[1]发展成为综合考虑电压质量、电流质量和环境因素等各个方面的多目标优化问题[2]。二次规划法[3]、遗传算法[4-5]等方法被应用于求解多目标选址定容问题,但这类方法需要设置权重来将多目标问题转化为单目标问题进行求解,而在现实中这些权重往往是难以确定的。近年来,随着多目标优化算法(multiobjective optimization evolutionary algorithm,MOEA)的发展,为多目标优化问题提供了新思路。MOEA 算法不需要设置权重,而是得到一组均匀分布的非劣帕累托最优解集。决策者可以根据需求,利用多属性决策方法从中选取一个或多个最优解,其中典型的 2 个决策算法是改进强度帕累托进化算法 2(improved strength Pareto evolutionary algorithm,SPEA)[6]和改进非支配解排序遗传算法(improvednon-dominated sorting genetic algorithm,NSGAII)[7]。因此,本文将 MOEA 算法应用于求解 DG 多目标选址定容问题。

📚2 运行结果

 

部分代码:

%% 分布式电源选址定容的多目标优化算法复现代码
 
%% 添加路径
addpath(genpath('参数,目标函数和约束条件'))
 
%% 清空内存
clc
clear
close all
 
%% 参数设置
parameter;
 
%% 目标函数
f1 = @objfun1;
f2 = @objfun2;
f3 = @objfun3;
 
%% 优化变量上下限约束
UB = [33 , 33 , 2 , 2];
LB = [2 , 2 , 0 , 0];
 
%% 约束条件
g1 = @conFcn1;
g2 = @conFcn2;
g3 = @conFcn3;
 
%% 无效解的修复函数
h = @decFcn;
 
%% 求解优化问题
[Dec,Obj,Con] = platemo('algorithm',@MOEADDE, 'objFcn',{f1,f2,f3},'encoding', [2,2,1,1], 'lower' , LB , 'upper' , UB , 'conFcn', {g1,g2,g3} , 'decFcn' , h);
Dec(:,1:2) = round(Dec(:,1:2));
 
%% 展示运行结果
show_result;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]夏澍,周明,李庚银.分布式电源选址定容的多目标优化算法[J].电网技术,2011,35(09):115-121.

[2] Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.

[3] Ye Tian, Weijian Zhu, Xingyi Zhang, and Yaochu Jin, “A practical tutorial on solving optimization problems via PlatEMO,” Neurocomputing, 2023, 518: 190-205.

        结合实际的算例,分析PlatMEO工具箱求解电力系统多目标优化领域的方法。

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值