💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
以下为关于内燃机模拟中BMEP、IMEP、FMEP、QMEP、PMEP、容积效率、曲轴转速、制动功率与制动转矩的综合性研究报告,内容基于最新研究成果与工程实践,力求全面覆盖各参数的定义、计算方法和相互关系。
一、平均有效压力系列参数
1. BMEP(制动平均有效压力)
定义:BMEP是衡量内燃机在曲轴端输出的有效功与气缸排量关系的虚拟压力,反映单位排量的做功能力。其计算公式为:
作用:
- 用于比较不同排量或转速发动机的性能,最高BMEP通常出现在2000-4000 rpm区间。
- 典型值:自然吸气汽油机为8.5-10.5 bar,增压汽油机可达12.5-17 bar。
实验验证:模拟与实测BMEP误差在±5%以内,例如在3000 rpm时模拟值为1.94 MPa,实测为1.619 MPa。
2. IMEP(指示平均有效压力)
定义:IMEP为燃烧过程中气缸内产生的总平均压力,涵盖做功冲程的净功。其与BMEP的关系为:
IMEP=BMEP+FMEPIMEP=BMEP+FMEP
计算:通过气缸压力积分法或热力学循环模拟获取,实验显示IMEP与BMEP的差值可反映机械损失。
应用:IMEP是燃烧效率的核心指标,例如在4000 rpm × 18.5 bar BMEP工况下,模拟与实验缸压曲线高度吻合。
3. FMEP(摩擦平均有效压力)
4. PMEP(泵送平均有效压力)
5. QMEP的说明
注:根据现有资料,QMEP未在内燃机领域定义。可能涉及Quantum Platform(QP)框架中的事件处理器QEP,但与平均有效压力无直接关联,需用户进一步澄清。
二、容积效率(Volumetric Efficiency)
影响因素:
- 泄漏:活塞环间隙、气门密封性等内/外泄漏导致效率下降。
- 气体动力学:进气压力波动和气体惯性效应,高速时进气时间不足。
- 热效应:进气道加热导致气体膨胀,实际充量减少。
典型值:轿车发动机最高容积效率(约85%-95%)出现在2500-3500 rpm,滚动活塞压缩机容积效率受结构损失和泄漏影响显著。
三、曲轴转速的影响
扭矩与转速关系:
- 理论上扭矩与转速正相关,但受进气限制,实际特性曲线呈抛物线型。
- 例如,当转速超过4000 rpm时,进气时间不足导致充气效率下降,扭矩降低。
优化策略: - 可变气门正时(VVT)延长高速时的进气时间。
- 涡轮增压提高进气密度,抵消高速充量损失。
四、制动功率与制动转矩
1. 制动功率(Brake Power)
计算公式:
其中,NN为转速(rpm),TT为制动扭矩(Nm)。
测量方法:通过测功机直接读取或通过燃油消耗率间接推算。
2. 制动转矩(Brake Torque)
定义:曲轴输出的有效扭矩,与功率关系为:
T=9550PbNT=N9550Pb
关键特性:
- 稳定性:受摩擦副材料温度特性影响,需控制热衰退。
- 调节性:通过电控系统实现扭矩按需分配,例如混合动力车的能量回收。
五、综合性能分析
参数关联图
IMEP
│
├─ BMEP = IMEP - FMEP
│ └─ 制动功率 = f(BMEP, 转速)
└─ FMEP = PMEP + RMEP + AMEP
└─ 泵送损失 = f(气门定时, 涡轮效率)
案例研究
- 涡轮增压优化:采用长行程凸轮轴将PMEP从-0.45 bar降至-0.20 bar,提升BMEP 10%。
- 高转速限制:某4.3L发动机在5000 rpm时容积效率降至53%,需调整进气谐振腔设计。
六、结论
BMEP和IMEP是评价内燃机做功能力的核心参数,而FMEP和PMEP揭示机械损失来源。容积效率与曲轴转速的耦合关系决定了发动机的高效区间,制动功率和转矩的精确计算为动力系统优化提供依据。未来研究需结合3D-CFD模拟与实时控制策略,进一步提升内燃机综合性能。
📚2 运行结果
部分代码:
Rsp = 0.287; %specific gas constant for air [kJ/kg.K]
k = 1.35; %specific heat ratio [unitless]
Cv = Rsp/(k-1); %specific heat capacity const volume [kJ/kg.K]
Cp = k*Cv; %specific heat capacity const pressure [kJ/kg.K]
%Define ambient conditions
Pa = 101.325; %Ambient pressure [kPa]
Ta = 333.15; %Ambient temperature [K]
rho_a = Pa/(Rsp*Ta); %Ambient density [kg/m^3]
%Temperature coming out of the intake pipe
T1 = Ta; %Initial temperature [K]
%Engine Geometric Parameters
np = 6; %Number of cylinders [unitless]
rc = 10; %compression ratio [unitless]
%Specify 2 of the following 3: Vd, B and L
Vd = 0.002; %Total displacement volume [m^3]
B = .5*(4*Vd/(np*pi))^(1/3); %Bore [m]
L = 4*B;%4*Vd/(np*pi*B^2); %Stroke [m]
a = L/2; %crankshaft length [m]
%Specify either R (geometric ratio) or l (connecting rod length)
R = 5.5; %Geometric ratio, l/a [unitless]
l = R*a; %Connecting rod length, [m]
%Operational parameters
Nstart = 1000; %crankshaft rotational speed [rpm]
Nend = 5000;
Nnumber = 3; %don't request fewer than 2 or the code will break
theta_s = -20; %combustion timing angle [degrees]
theta_s = theta_s * pi/180; %convert angle to radians
%Fuel parameters
Qhv = 43400; %Fuel heating value [kJ/kg fuel]
AF = 22; %A/F ratio [unitless]
Qin = Qhv/(AF+1); %Heat input, [kJ/kg mixture]
theta_d = 40; %combustion duration [degrees]
theta_d = theta_d*pi/180; %convert angle to radians
%Cooling parameters
Tinf= 85+273; %Coolant/Wall Temperature [K]
Vbdc = (Vd/np)*(rc/(rc-1)); %BDC volume [m^3]
Vtdc = (Vd/np)*(1/(rc-1)); %TDC volume [m^3]
Ach = 0.25*pi*B^2; %Cylinder head surface area [m^2]
Ap = Ach; %Piston crown surface area [m^2]
%Intake geometry patterns
LD_intake = 1000; %L/D for intake [unitless]
epsD = 0.01; %epsilon/D (roughness) of intake [unitless]
BD_intake = 1; %B/D_intake [unitless]
%Valve Parameters
n_iv = 2; %Number of intake valves [unitless]
n_ev = 2; %Number of exhaust valves [unitless]
Te_min = 273+800; %minimum expected exhaust temperature [K]
N_max = 8000; %max crankshaft spe2d [RPM]
%TASK 3: CALCULATE THE REQUIRED VALVE DIAMETERS HERE *****LECTURE 10 slide 27
Up_avg_max = 2*L*N_max/60; %max average piston speed based on max crankshaft speed [m/s]
c_in = sqrt(k*Rsp*1000*Ta); %speed of sound in the inlet pipe
c_ex = sqrt(k*Rsp*1000*Te_min); %speed of sound in the exhaust pipe
D_iv = sqrt(4*1.3*B^2*Up_avg_max/c_in/pi)/n_iv; %Diameter of intake valves [m]
D_ev = sqrt(4*1.3*B^2*Up_avg_max/c_ex/pi)/n_ev; %Diameter of exhaust valves [m]
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王锡斌,蒋德明,董学尧.内燃机工作过程数值模拟中的CFD[J].拖拉机与农用运输车, 2002(4):3.
[2]罗马吉,黄震,蒋炎坤,等.内燃机进气过程多维数值模拟的研究[J].车用发动机, 2003(5):5.
[3]董芳.内燃机燃烧过程的数值模拟[D].大连理工大学,2004.DOI:10.7666/d.y666181.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取