👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
配电网的电压稳定指标总体上可分为基于线路潮流传输的指标和基于节点电压稳定极限求解的各
类裕度指标。一般来说,配电网包含根节点、主干线路、侧翼线路、末端线路。相对于传输线路而言,其线路电抗电阻比大大减小,线路的有功功率损耗较高。因此,传统的电压稳定指标不能有效地评估配电网的电压稳定性。对此,本文提出了一种在系统某一运行状态下衡量网络中所有负荷节点电压稳定程度的指标。对于一个 包含 N 个节 点 的 配 电网,任意一条线路可以表示为如图1所示的简单模 型。图中,节点i为线路送端,节点j 为 线 路 受 端,节点i和j的电压分别为Ui∠δi 和Uj∠δj;节点j送出的潮流为Pi+jQi,线路阻抗为Ri+jXi。
节点电压稳定指标的值越小,则其电压稳定性越好,反之则稳定性越差;当aVSI=1.0时,该线路处于临界运行状态,相应的功率进一步增加,将导致该线路失去稳定的潮流平衡点,潮流方程无解,受端功率需求无法保证,系统发生电压崩溃。在任意系统运行状态下,计算所有节点的电压稳定指标,其值最大的节点被称为系统的薄弱节点。当全网负荷增加导致系统发生电压崩溃时,一定是从最薄弱节点开始的。对于系统运行人员而言,可 根 据aVSI与 临 界值1.0间的差值判断节点和系统的电压稳定裕度。
电网静态电压稳定性评估方法【IEEE33节点】研究文档
一、引言
电网静态电压稳定性评估是电力系统安全稳定运行的重要内容。IEEE33节点系统作为电力系统研究和验证的标准配置,被广泛应用于静态电压稳定性评估中。本文旨在探讨基于IEEE33节点的电网静态电压稳定性评估方法,以期为电力系统的安全稳定运行提供理论指导和技术支持。
二、IEEE33节点系统概述
IEEE33节点系统是一个标准的电力系统拓扑结构,由IEEE(电气与电子工程师协会)定义,包含了33个节点。该系统通常用于电力系统仿真、模拟和实验,以评估系统的性能和稳定性。在IEEE33节点系统中,电力从发电站或变电站通过主干线传输到配电变压器,然后再通过配电变压器分配到用户。
三、静态电压稳定性评估方法
-
基于线路潮流传输的指标
该方法通过分析线路潮流传输情况来评估电网的静态电压稳定性。通过计算线路的有功功率和无功功率,可以判断线路的负荷情况,进而评估电网的电压稳定性。当线路负荷接近或超过其传输极限时,电网的电压稳定性将受到影响。
-
基于节点电压稳定极限求解的裕度指标
该方法通过求解节点电压稳定极限来评估电网的静态电压稳定性。节点电压稳定极限是指在系统某一运行状态下,节点电压能够保持稳定的最大负荷值。通过计算节点电压稳定极限与当前负荷值之间的裕度,可以判断节点的电压稳定性。裕度越大,节点的电压稳定性越好;反之,则越差。
-
电压稳定指数(VSI)
电压稳定指数是一种综合反映电网电压稳定性的指标。它通过计算电网中各节点的电压稳定裕度来评估整个电网的电压稳定性。电压稳定指数的值越小,电网的电压稳定性越好;反之,则越差。当电压稳定指数接近或达到临界值时,电网将发生电压崩溃。
四、IEEE33节点系统静态电压稳定性评估实例
以IEEE33节点系统为例,采用上述方法进行静态电压稳定性评估。首先,根据系统潮流数据计算各线路的潮流传输情况,判断线路的负荷情况。然后,求解各节点的电压稳定极限,计算节点电压稳定裕度。最后,根据各节点的电压稳定裕度计算电压稳定指数,评估整个电网的电压稳定性。
通过实例分析,可以得出以下结论:
- 在IEEE33节点系统中,部分线路的负荷接近或超过其传输极限,对电网的电压稳定性构成威胁。
- 部分节点的电压稳定裕度较小,容易发生电压失稳现象。
- 电压稳定指数的值较小,但部分节点的电压稳定指数接近临界值,需要采取措施提高电网的电压稳定性。
五、提高电网静态电压稳定性的措施
针对IEEE33节点系统静态电压稳定性评估结果,可以采取以下措施提高电网的电压稳定性:
- 优化电网结构:通过增加输电线路、调整变压器容量等措施,提高电网的传输能力和负荷分配能力。
- 加强无功补偿:通过增加无功补偿装置、优化无功补偿策略等措施,提高电网的无功支撑能力,降低线路的无功损耗。
- 控制负荷增长:通过合理规划负荷增长、优化负荷分配等措施,避免电网负荷过快增长对电压稳定性的影响。
- 应用先进控制技术:通过应用自适应控制、鲁棒控制等先进控制技术,提高电网对负荷变化和故障扰动的适应能力。
六、结论与展望
本文基于IEEE33节点系统探讨了电网静态电压稳定性评估方法。通过实例分析,得出了电网静态电压稳定性的评估结果和提高措施。未来,我们将继续深入研究电网静态电压稳定性评估方法,探索更多有效的评估指标和措施,为电力系统的安全稳定运行提供更加全面和准确的理论指导和技术支持。
📚2 运行结果
function mpc = case33bw
%CASE33BW Power flow data for 33 bus distribution system from Baran & Wu
% Please see CASEFORMAT for details on the case file format.
%
% Data from ...
% M. E. Baran and F. F. Wu, "Network reconfiguration in distribution
% systems for loss reduction and load balancing," in IEEE Transactions
% on Power Delivery, vol. 4, no. 2, pp. 1401-1407, Apr 1989.
% doi: 10.1109/61.25627
% URL: https://doi.org/10.1109/61.25627
%% MATPOWER Case Format : Version 2
mpc.version = '2';
%%----- Power Flow Data -----%%
%% system MVA base
mpc.baseMVA = 10;
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below)
1 3 0 0 0 0 1 1 0 12.66 1 1 1;
2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9;
3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9;
6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9;
12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9;
16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9;
24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9;
30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9;
31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9;
32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9;
33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 0 0 10 -10 1 100 1 10 0 0 0 0 0 0 0 0 0 0 0 0;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [ %% (r and x specified in ohms here, converted to p.u. below)
1 2 0.0922 0.0470 0 0 0 0 0 0 1 -360 360;
2 3 0.4930 0.2511 0 0 0 0 0 0 1 -360 360;
3 4 0.3660 0.1864 0 0 0 0 0 0 1 -360 360;
4 5 0.3811 0.1941 0 0 0 0 0 0 1 -360 360;
5 6 0.8190 0.7070 0 0 0 0 0 0 1 -360 360;
6 7 0.1872 0.6188 0 0 0 0 0 0 1 -360 360;
7 8 0.7114 0.2351 0 0 0 0 0 0 1 -360 360;
8 9 1.0300 0.7400 0 0 0 0 0 0 1 -360 360;
9 10 1.0440 0.7400 0 0 0 0 0 0 1 -360 360;
10 11 0.1966 0.0650 0 0 0 0 0 0 1 -360 360;
11 12 0.3744 0.1238 0 0 0 0 0 0 1 -360 360;
12 13 1.4680 1.1550 0 0 0 0 0 0 1 -360 360;
13 14 0.5416 0.7129 0 0 0 0 0 0 1 -360 360;
14 15 0.5910 0.5260 0 0 0 0 0 0 1 -360 360;
15 16 0.7463 0.5450 0 0 0 0 0 0 1 -360 360;
16 17 1.2890 1.7210 0 0 0 0 0 0 1 -360 360;
17 18 0.7320 0.5740 0 0 0 0 0 0 1 -360 360;
2 19 0.1640 0.1565 0 0 0 0 0 0 1 -360 360;
19 20 1.5042 1.3554 0 0 0 0 0 0 1 -360 360;
20 21 0.4095 0.4784 0 0 0 0 0 0 1 -360 360;
21 22 0.7089 0.9373 0 0 0 0 0 0 1 -360 360;
3 23 0.4512 0.3083 0 0 0 0 0 0 1 -360 360;
23 24 0.8980 0.7091 0 0 0 0 0 0 1 -360 360;
24 25 0.8960 0.7011 0 0 0 0 0 0 1 -360 360;
6 26 0.2030 0.1034 0 0 0 0 0 0 1 -360 360;
26 27 0.2842 0.1447 0 0 0 0 0 0 1 -360 360;
27 28 1.0590 0.9337 0 0 0 0 0 0 1 -360 360;
28 29 0.8042 0.7006 0 0 0 0 0 0 1 -360 360;
29 30 0.5075 0.2585 0 0 0 0 0 0 1 -360 360;
30 31 0.9744 0.9630 0 0 0 0 0 0 1 -360 360;
31 32 0.3105 0.3619 0 0 0 0 0 0 1 -360 360;
32 33 0.3410 0.5302 0 0 0 0 0 0 1 -360 360;
% 21 8 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 9 15 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 12 22 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 18 33 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
% 25 29 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
];
%%----- OPF Data -----%%
%% generator cost data
% 1 startup shutdown n x1 y1 ... xn yn
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0 0 3 0 20 0;
];
%% convert branch impedances from Ohms to p.u.
[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
Vbase = mpc.bus(1, BASE_KV) * 1e3; %% in Volts
Sbase = mpc.baseMVA * 1e6; %% in VA
mpc.branch(:, [BR_R BR_X]) = mpc.branch(:, [BR_R BR_X]) / (Vbase^2 / Sbase);
%% convert loads from kW to MW
mpc.bus(:, [PD, QD]) = mpc.bus(:, [PD, QD]) / 1e3;
function mpc = case33bw
%CASE33BW Power flow data for 33 bus distribution system from Baran & Wu
% Please see CASEFORMAT for details on the case file format.
%
% Data from ...
% M. E. Baran and F. F. Wu, "Network reconfiguration in distribution
% systems for loss reduction and load balancing," in IEEE Transactions
% on Power Delivery, vol. 4, no. 2, pp. 1401-1407, Apr 1989.
% doi: 10.1109/61.25627
% URL: https://doi.org/10.1109/61.25627
%% MATPOWER Case Format : Version 2
mpc.version = '2';
%%----- Power Flow Data -----%%
%% system MVA base
mpc.baseMVA = 10;
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below)
1 3 0 0 0 0 1 1 0 12.66 1 1 1;
2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9;
3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9;
6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9;
12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9;
16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9;
24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9;
30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9;
31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9;
32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9;
33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 0 0 10 -10 1 100 1 10 0 0 0 0 0 0 0 0 0 0 0 0;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [ %% (r and x specified in ohms here, converted to p.u. below)
1 2 0.0922 0.0470 0 0 0 0 0 0 1 -360 360;
2 3 0.4930 0.2511 0 0 0 0 0 0 1 -360 360;
3 4 0.3660 0.1864 0 0 0 0 0 0 1 -360 360;
4 5 0.3811 0.1941 0 0 0 0 0 0 1 -360 360;
5 6 0.8190 0.7070 0 0 0 0 0 0 1 -360 360;
6 7 0.1872 0.6188 0 0 0 0 0 0 1 -360 360;
7 8 0.7114 0.2351 0 0 0 0 0 0 1 -360 360;
8 9 1.0300 0.7400 0 0 0 0 0 0 1 -360 360;
9 10 1.0440 0.7400 0 0 0 0 0 0 1 -360 360;
10 11 0.1966 0.0650 0 0 0 0 0 0 1 -360 360;
11 12 0.3744 0.1238 0 0 0 0 0 0 1 -360 360;
12 13 1.4680 1.1550 0 0 0 0 0 0 1 -360 360;
13 14 0.5416 0.7129 0 0 0 0 0 0 1 -360 360;
14 15 0.5910 0.5260 0 0 0 0 0 0 1 -360 360;
15 16 0.7463 0.5450 0 0 0 0 0 0 1 -360 360;
16 17 1.2890 1.7210 0 0 0 0 0 0 1 -360 360;
17 18 0.7320 0.5740 0 0 0 0 0 0 1 -360 360;
2 19 0.1640 0.1565 0 0 0 0 0 0 1 -360 360;
19 20 1.5042 1.3554 0 0 0 0 0 0 1 -360 360;
20 21 0.4095 0.4784 0 0 0 0 0 0 1 -360 360;
21 22 0.7089 0.9373 0 0 0 0 0 0 1 -360 360;
3 23 0.4512 0.3083 0 0 0 0 0 0 1 -360 360;
23 24 0.8980 0.7091 0 0 0 0 0 0 1 -360 360;
24 25 0.8960 0.7011 0 0 0 0 0 0 1 -360 360;
6 26 0.2030 0.1034 0 0 0 0 0 0 1 -360 360;
26 27 0.2842 0.1447 0 0 0 0 0 0 1 -360 360;
27 28 1.0590 0.9337 0 0 0 0 0 0 1 -360 360;
28 29 0.8042 0.7006 0 0 0 0 0 0 1 -360 360;
29 30 0.5075 0.2585 0 0 0 0 0 0 1 -360 360;
30 31 0.9744 0.9630 0 0 0 0 0 0 1 -360 360;
31 32 0.3105 0.3619 0 0 0 0 0 0 1 -360 360;
32 33 0.3410 0.5302 0 0 0 0 0 0 1 -360 360;
% 21 8 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 9 15 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 12 22 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
% 18 33 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
% 25 29 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
];
%%----- OPF Data -----%%
%% generator cost data
% 1 startup shutdown n x1 y1 ... xn yn
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0 0 3 0 20 0;
];
%% convert branch impedances from Ohms to p.u.
[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
Vbase = mpc.bus(1, BASE_KV) * 1e3; %% in Volts
Sbase = mpc.baseMVA * 1e6; %% in VA
mpc.branch(:, [BR_R BR_X]) = mpc.branch(:, [BR_R BR_X]) / (Vbase^2 / Sbase);
%% convert loads from kW to MW
mpc.bus(:, [PD, QD]) = mpc.bus(:, [PD, QD]) / 1e3;
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]张谦,廖清芬,唐飞,徐君茹,刘涤尘,邹宏亮.计及分布式电源接入的配电网静态电压稳定性评估方法[J].电力系统自动化,2015,39(15):42-48.