👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:配备分布式能源的家庭,可以根据运营情况自行使用现场发电,也可以将能源出售给电网,或者两者兼而有之。本文建立了能源服务提供商对家庭能源资源进行优化的模型。我们考虑配备了技术的房屋,这些技术支持实际减少能源账单,从而执行需求响应行动。建立了一个数学公式,以求得家用设备的最优调度,以最小化能源账单和需求响应削减行动。本文的创新方法除了采用调度模型外,还采用了进化算法来解决两种优化方法下的问题:(a)非并行方法将所有家庭的变量同时组合;(b)基于并行的方法利用多人口机制和独立优化,利用家庭之间变量的独立性。
结果表明,基于并行的方法可以提高测试的进化算法在更大的问题实例中的性能。因此,虽然增加了问题的规模,即增加了家庭的数目,但拟议的方法将更为有利。总体而言,涡旋搜索克服了所有其他测试算法(包括众所周知的差分进化和粒子群优化),在所有情况下的适应度值都提高了30%左右,证明了它在解决所提出问题方面的有效性。
关键词:需求响应;能源服务提供商;储能系统;进化算法;优化;太阳能光伏发电
本文流程图:
结论
在本文中,我们使用不同的进化算法(EAs)来解决涉及带有光伏-电池系统和需求响应(DR)的家庭的优化问题。利用家庭之间变量的独立性,提出了两种优化方法:非并行方法和基于并行的方法。结果显示,当家庭数量增加时,采用基于并行的方法的进化算法能够提供具有更好适应度值的解决方案。研究表明,将进化算法直接应用于问题的较大实例(非并行方法)在收敛能力方面表现较差(尽管在应用于一到两个家庭时非常高效)。另一方面,提出的基于并行的方法即使在家庭数量增加时也表现出色。需要注意的是,基于并行的方法仅适用于本文假设的框架(这实际上是一个非常可能的实际场景,因为家庭可能不愿意在彼此之间共享数据或设备),因此改变这些条件可能需要采用混合的非并行和并行方法。总体而言,VS算法在使用两种优化方法时均优于其他测试的进化算法。实际上,与PSO(表现最差)相比,VS(表现最佳)在案例C1中实现了30.57%的改进,在案例C2中实现了19.06%的改进,在案例C3中实现了22.59%的改进,在案例C4中实现了25.41%的改进。基于并行方法的另一个优势是,可以利用并行计算来减少优化时间,同时获得质量良好的解决方案。
从实际应用角度来看,本文设想了一家能源服务提供商参与其中,对配备分布式能源资源(如光伏发电、储能和需求响应)以及所需控制设备的家庭进行优化。通过这种方式,能源服务提供商可以在这一框架内探索多种商业模式。例如,服务提供商可以从家庭实现的总账单减少中收取费用或佣金,或者从上级参与者(如配电网运营商)那里获得激励,以通过需求响应减少峰值需求。这两种选择以及其他探索使用现有基础设施进行实际应用的商业模式可能性可以在未来的研究中进行探讨。未来研究的另一个方向与数学模型有关。在本研究中,尽管能源账单和需求响应削减是可以根据用户偏好进行优化的项,但它们被合并为单一目标公式。因此,可以使用多目标优化版本的进化算法来寻找帕累托最优解。此外,本研究没有明确定义需求响应削减与用户舒适度之间的关系,因此可以进一步研究用户舒适度的建模。最后,进化算法的实际应用也值得在未来的研究中进行探索。基于并行的方法使用了类似于协同进化算法所使用的多群体,因此测试这类算法及其在该问题中的表现是一个很好的研究方向。此外,在本研究中,基于并行的方法是按顺序实现的,因此优化时间反映了所有独立优化的总和。在未来的研究中,可以提出实现一个真正的并行平台,以处理问题的更大实例,并评估该方法的范围和可扩展性。
基于进化算法的住宅光伏电池系统需求响应研究
1. 需求响应与住宅光伏系统的协同意义
需求响应(Demand Response, DR)是智能电网中实现供需平衡的核心机制,其核心在于通过价格信号或经济激励引导用户调整用电行为。住宅光伏系统作为分布式能源的重要组成部分,具有发电灵活性与环境友好性,但其间歇性特征对电网稳定性构成挑战。二者的结合可通过以下途径优化能源利用:
- 削峰填谷:在电价高峰时段优先使用光伏发电或储能设备,降低电网负荷;
- 能源套利:通过储能系统存储低价时段电能,高价时段出售至电网;
- 可再生能源整合:动态调整用电模式以匹配光伏出力曲线,提升自发自用率。
进化算法因其在多目标、非线性优化问题中的突出表现,成为协调光伏系统与需求响应的关键技术工具。其优势体现在处理复杂约束、动态环境适应及全局最优解搜索能力。
2. 住宅光伏系统组成与需求响应实施基础
住宅光伏系统的主要组件及其在DR中的作用如下:
组件 | 功能描述 | DR相关作用 |
---|---|---|
光伏电池阵列 | 将太阳能转化为直流电 | 提供基础能源供给,减少电网依赖 |
逆变器 | 直流/交流转换,实现并网 | 支持双向电力流动,实现余电上网 |
储能系统(可选) | 存储多余电能 | 调节供需时移,支撑削峰填谷策略 |
智能电表 | 实时监测发电与用电数据 | 为电价信号响应提供数据基础 |
能源管理系统(EMS) | 协调设备运行 | 执行优化算法生成的调度策略 |
关键运行特性:
- 净计量机制:双向电表记录电网交互电量,形成经济激励基础;
- 功率可调性:通过逆变器控制输出功率,响应电网调节指令;
- 储能动态调度:电池充放电策略直接影响需求响应灵活性。
3. 进化算法的优化框架设计
3.1 问题建模
目标函数通常包含多维度优化目标:
3.2 算法选择与改进
常用进化算法变体及其适应性:
算法类型 | 优势场景 | 改进方向(文献案例) |
---|---|---|
遗传算法(GA) | 多目标优化 | 引入精英保留策略防止早熟 |
差分进化(DE) | 连续变量优化 | 自适应参数调节增强鲁棒性 |
粒子群优化(PSO) | 快速收敛 | 混沌初始化提升种群多样性 |
协同进化算法 | 复杂约束处理 | 双种群策略分离可行/不可行域搜索 |
典型改进策略:
- 混合算法:GA与模拟退火结合,平衡全局与局部搜索;
- 动态编码:针对储能充放电状态设计离散-连续混合编码;
- 约束处理:采用可行性规则引导种群向可行域进化。
4. 应用案例与性能分析
4.1 典型研究场景
- 单户住宅优化:以24小时为周期,优化充放电策略与负荷转移;
- 社区级聚合:考虑多户光伏-储能的协同调度,降低整体购电成本;
- 极端事件响应:在电网故障时启动孤岛模式,优先保障关键负荷。
4.2 性能指标对比
某研究对比不同算法在光伏DR中的表现:
算法 | 成本降低率 | 计算时间(秒) | 约束满足率 |
---|---|---|---|
标准GA | 18.7% | 92 | 95.2% |
改进DE | 22.3% | 105 | 98.1% |
混合PSO-GA | 24.5% | 134 | 99.6% |
关键发现:
- 混合算法在优化效果上优于单一算法,但计算成本增加;
- 差分进化在连续变量优化中表现出更高精度;
- 协同进化算法在复杂约束下约束满足率提升15%。
5. 挑战与未来方向
5.1 当前技术瓶颈
- 数据质量:住宅负荷与光伏出力预测误差影响优化精度;
- 用户行为建模:舒适度偏好难以量化,需结合问卷调查与机器学习;
- 通信延迟:实时控制对通信基础设施要求高。
5.2 前沿研究方向
- 数字孪生技术:构建虚拟电站进行策略预演;
- 区块链集成:实现点对点能源交易与DR合约自动化;
- 跨季节优化:考虑光伏季节性出力特征的长期储能配置。
6. 结论
进化算法为住宅光伏系统参与需求响应提供了强有力的优化工具,其核心价值体现在:
- 多目标权衡:协调经济性、舒适度与设备寿命的Pareto最优解;
- 动态适应性:应对天气突变、电价波动等实时变化;
- 规模化潜力:通过分布式计算框架支持社区级协同优化。
未来研究需进一步融合人工智能与物联网技术,构建“预测-优化-控制”闭环系统,推动住宅光伏从被动发电单元向主动电网调节资源转型。
📚2 运行结果
部分代码:
%% Load MH parameters (e.g., get MH parameters from DEparameters.m file)
switch Select_Algorithm
case 1
addpath('DEalg')
algorithm='DE_rand'; %'The participants should include their algorithm here'
DEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; %Notice that some algorithms are limited to one individual
case 2
addpath('PSOalg')
algorithm='PSO_LVS'; %'The participants should include their algorithm here'
psoParameters %Function defined by the participant
No_solutions=PSOparameters.nPop; %Notice that some algorithms are limited to one individual
case 3
addpath('alg_HyDEDF')
algorithm='HyDE_DF'; %'The participants should include their algorithm here'
HyDEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; %Notice that some algorithms are limited to one individual
deParameters.I_strategy=3;
deParameters.I_strategyVersion=2;
case 4
addpath('alg_HyDEDF')
algorithm='HyDE'; %'The participants should include their algorithm here'
HyDEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; %Notice that some algorithms are limited to one individual
deParameters.I_strategy=3;
deParameters.I_strategyVersion=3;
case 5
addpath('alg_HyDEDF')
algorithm='VS'; %'The participants should include their algorithm here'
HyDEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; %Notice that some algorithms are limited to one individual
deParameters.I_strategy=3;
deParameters.I_strategyVersion=1;
case 6
addpath('alg_HyDEDF')
algorithm='DE_best'; %'The participants should include their algorithm here'
HyDEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; %Notice that some algorithms are limited to one individual
deParameters.I_strategy=2;
deParameters.I_strategyVersion=1;
otherwise
fprintf(1,'No algorithm selected\n');
end
fileResultsname=['Results\' algorithm 'NP_20_Nplayers' num2str(Nplayers) '.mat'];
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。