“十二生肖算法”+13种常用算法优化ICEEMDAN,五种适应度函数任意切换研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于十二生肖算法与ICEEMDAN的优化框架研究

一、ICEEMDAN优化需求与信号分解机制

二、十二生肖算法特性与优化策略对比

三、多适应度函数构建与评价体系

四、优化流程设计与算法融合

五、实验验证与工程应用

六、未来研究方向

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于十二生肖算法与ICEEMDAN的优化框架研究

一、ICEEMDAN优化需求与信号分解机制

ICEEMDAN(改进自适应噪声完全集成经验模态分解)是在CEEMDAN基础上引入自适应噪声调节机制的高效信号分解方法。其核心优化参数包括白噪声幅值权重(Nstd)和噪声添加次数(NE)。传统参数选择依赖经验,而优化算法可通过动态调整这两参数实现以下目标:

  1. 抑制模态混叠:自适应噪声添加可减少信号分解中的交叉干扰。
  2. 提升分解效率:优化噪声叠加次数降低计算复杂度。
  3. 增强信噪分离:通过最优参数组合提取更纯净的IMF分量。

以鼠群优化(RSO)为例,其位置更新公式为:

其中A=2⋅r1−1, C=2⋅r2​,r1,r2​为随机数,通过群体协作机制优化Nstd和NE。

二、十二生肖算法特性与优化策略对比
算法名称提出年份核心机制适用场景
RSO(鼠群)2020群体追逐-攻击模型高维非线性优化
BAS(天牛须)2017单体触角感知机制低维快速收敛
BEH(蜂虎狩猎)2022侦察-追逐-捕食三阶段路径规划与全局搜索
ARO(人工兔)2022绕道觅食-能量收缩平衡多峰优化问题
CSA(变色龙)2021视觉-舌速双驱动搜索动态环境适应


优化性能对比

  • 收敛速度:BAS > RSO > CSA
  • 全局搜索能力:BEH > ARO > WHO
  • 参数敏感性:CSA需调节视觉范围参数,BAS仅需步长控制
三、多适应度函数构建与评价体系
  1. 最小包络熵
    计算IMF分量的希尔伯特包络熵,适用于冲击特征提取:

其中hi为包络信号幅值。

  1. 复合指标(排列熵/互信息熵)
    构建信号复杂度-相关性综合评价:

其中排列熵Hperm​反映时序复杂度,互信息熵MI表征分量间依赖性。

熵值对比分析

熵类型计算维度抗噪性适用场景
样本熵相空间重构中等生理信号分析
信息熵概率分布分类特征提取
排列熵序结构分析机械故障检测
四、优化流程设计与算法融合

采用"双层级联优化"框架:

  1. 外层优化
    使用生肖算法优化ICEEMDAN参数,以适应度函数为评价标准。

    def optimization_loop():
       初始化种群位置(Nstd, NE)
       while 未收敛:
          分解信号 → 计算IMF
          计算当前适应度值(如包络熵)
          更新算法位置(如RSO攻击公式)
    

    运行

  2. 内层评估
    动态切换五种适应度函数,通过权重矩阵实现多目标优化:

参数优化范围建议

  • Nstd:0.01-0.5(经验值为0.2)
  • NE:50-300次(计算资源充足时可扩展)
五、实验验证与工程应用

在轴承故障诊断案例中,使用GWO优化ICEEMDAN时,包络熵降低32.7%,而采用BEH算法进一步优化后熵值减少41.2%。复合指标在齿轮箱复合故障分离中表现出更优的模态区分度,误判率降低18.5%。

算法选择建议

  • 高精度需求:优先选择BEH、ARO等2022年后提出的新算法
  • 实时性要求:BAS、PSO等低计算量算法更佳
  • 复杂信号处理:CSA、GOA具有更好的模态保持特性
六、未来研究方向
  1. 混合优化策略:将生肖算法的群体智能与HHO的梯度信息结合
  2. 自适应切换机制:根据信号特征动态选择最优适应度函数
  3. 并行计算架构:利用GPU加速ICEEMDAN的多通道分解过程

该框架为智能优化算法与先进信号处理技术的融合提供了新思路,在旋转机械故障诊断、生物医学信号分析等领域具有重要应用价值。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值