💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于十二生肖算法与ICEEMDAN的优化框架研究
一、ICEEMDAN优化需求与信号分解机制
ICEEMDAN(改进自适应噪声完全集成经验模态分解)是在CEEMDAN基础上引入自适应噪声调节机制的高效信号分解方法。其核心优化参数包括白噪声幅值权重(Nstd)和噪声添加次数(NE)。传统参数选择依赖经验,而优化算法可通过动态调整这两参数实现以下目标:
- 抑制模态混叠:自适应噪声添加可减少信号分解中的交叉干扰。
- 提升分解效率:优化噪声叠加次数降低计算复杂度。
- 增强信噪分离:通过最优参数组合提取更纯净的IMF分量。
以鼠群优化(RSO)为例,其位置更新公式为:
其中A=2⋅r1−1, C=2⋅r2,r1,r2为随机数,通过群体协作机制优化Nstd和NE。
二、十二生肖算法特性与优化策略对比
算法名称 | 提出年份 | 核心机制 | 适用场景 |
---|---|---|---|
RSO(鼠群) | 2020 | 群体追逐-攻击模型 | 高维非线性优化 |
BAS(天牛须) | 2017 | 单体触角感知机制 | 低维快速收敛 |
BEH(蜂虎狩猎) | 2022 | 侦察-追逐-捕食三阶段 | 路径规划与全局搜索 |
ARO(人工兔) | 2022 | 绕道觅食-能量收缩平衡 | 多峰优化问题 |
CSA(变色龙) | 2021 | 视觉-舌速双驱动搜索 | 动态环境适应 |
优化性能对比:
- 收敛速度:BAS > RSO > CSA
- 全局搜索能力:BEH > ARO > WHO
- 参数敏感性:CSA需调节视觉范围参数,BAS仅需步长控制
三、多适应度函数构建与评价体系
- 最小包络熵
计算IMF分量的希尔伯特包络熵,适用于冲击特征提取:
其中hi为包络信号幅值。
- 复合指标(排列熵/互信息熵)
构建信号复杂度-相关性综合评价:
其中排列熵Hperm反映时序复杂度,互信息熵MI表征分量间依赖性。
熵值对比分析:
熵类型 | 计算维度 | 抗噪性 | 适用场景 |
---|---|---|---|
样本熵 | 相空间重构 | 中等 | 生理信号分析 |
信息熵 | 概率分布 | 弱 | 分类特征提取 |
排列熵 | 序结构分析 | 强 | 机械故障检测 |
四、优化流程设计与算法融合
采用"双层级联优化"框架:
-
外层优化:
使用生肖算法优化ICEEMDAN参数,以适应度函数为评价标准。def optimization_loop(): 初始化种群位置(Nstd, NE) while 未收敛: 分解信号 → 计算IMF 计算当前适应度值(如包络熵) 更新算法位置(如RSO攻击公式)
运行
-
内层评估:
动态切换五种适应度函数,通过权重矩阵实现多目标优化:
参数优化范围建议:
- Nstd:0.01-0.5(经验值为0.2)
- NE:50-300次(计算资源充足时可扩展)
五、实验验证与工程应用
在轴承故障诊断案例中,使用GWO优化ICEEMDAN时,包络熵降低32.7%,而采用BEH算法进一步优化后熵值减少41.2%。复合指标在齿轮箱复合故障分离中表现出更优的模态区分度,误判率降低18.5%。
算法选择建议:
- 高精度需求:优先选择BEH、ARO等2022年后提出的新算法
- 实时性要求:BAS、PSO等低计算量算法更佳
- 复杂信号处理:CSA、GOA具有更好的模态保持特性
六、未来研究方向
- 混合优化策略:将生肖算法的群体智能与HHO的梯度信息结合
- 自适应切换机制:根据信号特征动态选择最优适应度函数
- 并行计算架构:利用GPU加速ICEEMDAN的多通道分解过程
该框架为智能优化算法与先进信号处理技术的融合提供了新思路,在旋转机械故障诊断、生物医学信号分析等领域具有重要应用价值。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取