【北大核心】改进花朵授粉算法的无线传感器网络部署优化(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

改进花朵授粉算法的无线传感器网络部署优化研究

一、花朵授粉算法(FPA)的基本原理与特点

二、无线传感器网络(WSN)部署的关键挑战与评价指标

三、现有FPA在WSN部署中的应用与改进策略

1. 改进型FPA算法

2. 多目标优化扩展

四、改进算法的性能比较与实验验证

五、未来研究方向

六、总结

📚2 运行结果

2.1 有障碍物

2.2 无障碍物 

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


💥1 概述

文献来源:

改进花朵授粉算法的无线传感器网络部署优化研究

 摘要:针对监测区域内含有障碍物的无线传感器网络(Wireless Sensor Networks,WSNs)异构节点部署优化问题,在花朵授粉算法(FlowerPollinationAlgorithm,FPA)的基础之上,提出了一种改进的花朵授粉算法(Improved Flower Pollination Algorithm,IFPA)用于改善原有算法收敛速度慢、精度不够高的不足。设计非线性收敛因子以约束原有的缩放因子,采用Tent映射以维持迭代后期种群的多样性,而贪心交叉策略则是以较优的个体辅助较差个体搜索。基准函数实验验证了IFPA具有较好的收敛性能,而WSN部署的仿真实验表明IFPA可得到较高的覆盖率,可节约网络部署成本。

关键词:

无线传感器网络;覆盖优化;异构节点;障碍物;改进花朵授粉算法;

 随着 5G 和物联网的发展,无线传感器网络 在医疗健康、环境监测和工业领域有着广泛的应

用[1-3]。近些年,研究者在无线传感器网络(Wireless Sensor Networks, WSNs)中的路由协议、定位和覆盖方面研究成果丰硕[4-6],其中覆盖优化是 WSN 的一个最基本问题[7]。随着群智能算法在优化问题上的广泛应用,近些年的研究大多是以智能优化算法实现节点的动态部署。文献[8]提出了一种根据当前搜索状态自适应搜索的粒子群优化(Particle SwarmOptimization,PSO)算法,利用改进的 PSO 优化传感器网络部署,提高了网络的自适应能力,但算法本身仍存在陷入局部最优的不足。文献[9]是利用改进的虚拟弹簧力算法 (Virtual Spring ForceAlgorithm)部署正六边形网络拓扑,有效的减少了传感器网络中漏洞的面积,该方案只讨论了理想条件下的部署策略,复杂环境并未考虑。文献[10]提出一种基于改进灰狼优化(Grey Wolf Optimizer)算法的覆盖优化策略,但没有考虑实际部署中存在障碍物的情况。文献[11]以覆盖率为目标,用改进的鱼群算法(Fish Swarm Optimization)优化传感器节点的部署,显著的提高了网络覆盖面积,但只是针对同构传感器,并未考虑异构传感器和复杂情况下的监测环境。

花朵授粉算法(Flower Pollination Algorithm, FPA)是英国学者 Yang 近些年根据花朵授粉的方式

提出的一种启发式搜索算法[12]。FPA 具有较好的寻优能力和收敛性能,因而得到了广泛的应用。文献[13]将离散操作加入到 FPA 中,并把它应用到解决柔性作业车间调度的问题上,仿真实验证明了算法具有较好的搜索优化效果,但算法的收敛速度较慢。文献[14]提出了一种基于混沌搜索的改进花朵授粉算法,提高了算法跳出局部最优的能力和解的精度,并将其应用于数独问题时,算法可提供更好、更清晰的解决方案,但算法的收敛性能并没有显著提高。

一、花朵授粉算法(FPA)的基本原理与特点

花朵授粉算法(Flower Pollination Algorithm, FPA)由Yang于2012年提出,其灵感源于自然界中显花植物的授粉过程,结合生物异花授粉的全局搜索和非生物自花授粉的局部优化特性,具有参数少、实现简单的优势。其核心规则包括:

  1. 全局授粉:通过昆虫等传粉者的Levy飞行模拟远距离花粉传播,实现全局探索。
  2. 局部授粉:通过自交授粉模拟局部开发,依赖两朵花之间的相似性概率。
  3. 转换概率p:控制全局与局部授粉的切换,通常取0.6-0.8以平衡搜索能力。
  4. Levy分布:用于模拟传粉者的长距离跳跃行为,增强全局寻优效率。

FPA的数学表达为:


二、无线传感器网络(WSN)部署的关键挑战与评价指标

WSN部署需兼顾覆盖、连通性、能耗三大核心指标:

  1. 覆盖:包括初始覆盖率、动态调整能力及障碍物环境下的盲区处理。
  2. 连通性:节点间多跳通信的稳定性,需避免网络分割。
  3. 能耗:节点能量有限,部署需优化能量均衡与网络寿命。

主要挑战

  • 动态环境适应:移动目标或节点故障需实时调整部署。
  • 算法复杂度:传统方法(如遗传算法、粒子群优化)易陷入局部最优且收敛速度慢。
  • 异构节点管理:不同传感器类型与能量级别的协同优化。

三、现有FPA在WSN部署中的应用与改进策略
1. 改进型FPA算法

针对FPA的收敛速度慢、易陷入局部极值等问题,研究者提出以下优化策略:

  • 参数调整
    • 自适应转换概率:动态调整p值以平衡全局与局部搜索,例如基于迭代次数的非线性递减函数。
    • 非线性收敛因子:约束缩放因子γ,加速后期收敛。
  • 混合策略
    • 与杂草算法结合:通过竞争机制增强种群多样性,提升覆盖率。
    • 高斯扰动(EFPA-G) :在局部搜索中引入高斯随机扰动,避免局部最优。
    • 模拟退火融合:利用概率突跳策略增强全局搜索能力。
  • 精英保留与变异
    • t-分布精英保留:通过精英概率维持种群多样性,结合高斯变异提升局部精度。
2. 多目标优化扩展

针对WSN多目标需求(如覆盖、能耗、成本),提出 非支配排序多目标FPA(NSMOFPA)

  • 外部存档策略:保存Pareto最优解集。
  • 拥挤度计算:维持解集分布的均匀性,适用于复杂障碍物环境。

四、改进算法的性能比较与实验验证

以下为几种典型改进算法在WSN部署中的性能对比:

算法优化目标优势实验指标(覆盖率/能耗)文献来源
IFPA单目标(覆盖率)收敛速度快,障碍物适应性强92.5% / 降低15%
NSMOFPA多目标(覆盖、能耗、溢出率)Pareto前沿分布均匀89% / 能耗降低20%
EFPA-G节点定位精度高斯扰动增强局部搜索定位误差<0.5m
混合杂草-FPA覆盖率与能效比种群多样性高,适应动态环境94% / 能效提升18%
HSFPA(模拟退火)复杂环境覆盖全局搜索能力突出91% / 收敛迭代减少30%

实验结论

  • IFPA在静态环境中表现最佳,覆盖率高且部署成本低。
  • NSMOFPA适用于多目标优化场景,但计算复杂度较高。
  • EFPA-G在节点定位任务中精度显著优于传统方法。

五、未来研究方向
  1. 动态环境适应性:结合强化学习实现实时部署调整。
  2. 三维部署优化:扩展算法至复杂地形与曲面覆盖。
  3. 能耗深度优化:引入能量收集模型(如太阳能)延长网络寿命。
  4. 异构网络协同:融合边缘计算与FPA实现智能节点调度。

六、总结

改进型FPA通过参数自适应、混合策略及多目标扩展,显著提升了WSN部署的覆盖率、能耗效率和动态适应性。未来需进一步结合新型智能算法与硬件技术,推动WSN在物联网、工业监测等领域的实际应用。

📚2 运行结果

2.1 有障碍物

 几种算法比较图:

 

 

 

 

2.2 无障碍物 

 

 

 部分代码:

%以下数据验证完毕,完全正确
point = zeros(8,2);%存储这些点  从左  从上往下
point(1,:) = [x1_up,50];
point(2,:) = [0,y1_down];
point(3,:) = [0,y2_up];
point(4,:) = [x2_down,0];
point(5,:) = [x3_up,50];
point(6,:) = [50,y3_down];
point(7,:) = [50,y4_up];
point(8,:) = [x4_down,0];

%菱形的计算
point_diamond = zeros(2,4);%菱形的四个点,方位是顺时针 第一列为上 二列为右
%求出新菱形形的四个点
syms x y;%先定义一个变量
%左上角
k5 = 1;
b5 = 10;
%别搞什么计算了  直接可以看出来

point_diamond(1,1) = 25;
point_diamond(2,1) = 35;

%右上角
k6 = -1;
b6 = 60;

point_diamond(1,2) = 35;
point_diamond(2,2) = 25;

%右下角
k7 = 1;
b7 = -10;

point_diamond(1,3) = 25;
point_diamond(2,3) = 15;

%左下角
k8 = 1;
b8 = 40;

point_diamond(1,4) = 15;
point_diamond(2,4) = 25;

load struct_pop_public.mat;%加载该种群
struct_pops = struct_pop_public;%得到种群数据

load struct_first_init_public.mat%加载最开始的一个个体数据
struct_first_init = struct_first_init_public;%得到初始化个体数据

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王振东,谢华茂,胡中栋,李大海,王俊岭.改进花朵授粉算法的无线传感器网络部署优化[J].系统仿真学报,2021,33(03):645-656.DOI:10.16182/j.issn1004731x.joss.19-0580.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值