💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
改进花朵授粉算法的无线传感器网络部署优化研究
摘要:针对监测区域内含有障碍物的无线传感器网络(Wireless Sensor Networks,WSNs)异构节点部署优化问题,在花朵授粉算法(FlowerPollinationAlgorithm,FPA)的基础之上,提出了一种改进的花朵授粉算法(Improved Flower Pollination Algorithm,IFPA)用于改善原有算法收敛速度慢、精度不够高的不足。设计非线性收敛因子以约束原有的缩放因子,采用Tent映射以维持迭代后期种群的多样性,而贪心交叉策略则是以较优的个体辅助较差个体搜索。基准函数实验验证了IFPA具有较好的收敛性能,而WSN部署的仿真实验表明IFPA可得到较高的覆盖率,可节约网络部署成本。
关键词:
无线传感器网络;覆盖优化;异构节点;障碍物;改进花朵授粉算法;
随着 5G 和物联网的发展,无线传感器网络 在医疗健康、环境监测和工业领域有着广泛的应
用[1-3]。近些年,研究者在无线传感器网络(Wireless Sensor Networks, WSNs)中的路由协议、定位和覆盖方面研究成果丰硕[4-6],其中覆盖优化是 WSN 的一个最基本问题[7]。随着群智能算法在优化问题上的广泛应用,近些年的研究大多是以智能优化算法实现节点的动态部署。文献[8]提出了一种根据当前搜索状态自适应搜索的粒子群优化(Particle SwarmOptimization,PSO)算法,利用改进的 PSO 优化传感器网络部署,提高了网络的自适应能力,但算法本身仍存在陷入局部最优的不足。文献[9]是利用改进的虚拟弹簧力算法 (Virtual Spring ForceAlgorithm)部署正六边形网络拓扑,有效的减少了传感器网络中漏洞的面积,该方案只讨论了理想条件下的部署策略,复杂环境并未考虑。文献[10]提出一种基于改进灰狼优化(Grey Wolf Optimizer)算法的覆盖优化策略,但没有考虑实际部署中存在障碍物的情况。文献[11]以覆盖率为目标,用改进的鱼群算法(Fish Swarm Optimization)优化传感器节点的部署,显著的提高了网络覆盖面积,但只是针对同构传感器,并未考虑异构传感器和复杂情况下的监测环境。
花朵授粉算法(Flower Pollination Algorithm, FPA)是英国学者 Yang 近些年根据花朵授粉的方式
提出的一种启发式搜索算法[12]。FPA 具有较好的寻优能力和收敛性能,因而得到了广泛的应用。文献[13]将离散操作加入到 FPA 中,并把它应用到解决柔性作业车间调度的问题上,仿真实验证明了算法具有较好的搜索优化效果,但算法的收敛速度较慢。文献[14]提出了一种基于混沌搜索的改进花朵授粉算法,提高了算法跳出局部最优的能力和解的精度,并将其应用于数独问题时,算法可提供更好、更清晰的解决方案,但算法的收敛性能并没有显著提高。
一、花朵授粉算法(FPA)的基本原理与特点
花朵授粉算法(Flower Pollination Algorithm, FPA)由Yang于2012年提出,其灵感源于自然界中显花植物的授粉过程,结合生物异花授粉的全局搜索和非生物自花授粉的局部优化特性,具有参数少、实现简单的优势。其核心规则包括:
- 全局授粉:通过昆虫等传粉者的Levy飞行模拟远距离花粉传播,实现全局探索。
- 局部授粉:通过自交授粉模拟局部开发,依赖两朵花之间的相似性概率。
- 转换概率p:控制全局与局部授粉的切换,通常取0.6-0.8以平衡搜索能力。
- Levy分布:用于模拟传粉者的长距离跳跃行为,增强全局寻优效率。
FPA的数学表达为:
二、无线传感器网络(WSN)部署的关键挑战与评价指标
WSN部署需兼顾覆盖、连通性、能耗三大核心指标:
- 覆盖:包括初始覆盖率、动态调整能力及障碍物环境下的盲区处理。
- 连通性:节点间多跳通信的稳定性,需避免网络分割。
- 能耗:节点能量有限,部署需优化能量均衡与网络寿命。
主要挑战:
- 动态环境适应:移动目标或节点故障需实时调整部署。
- 算法复杂度:传统方法(如遗传算法、粒子群优化)易陷入局部最优且收敛速度慢。
- 异构节点管理:不同传感器类型与能量级别的协同优化。
三、现有FPA在WSN部署中的应用与改进策略
1. 改进型FPA算法
针对FPA的收敛速度慢、易陷入局部极值等问题,研究者提出以下优化策略:
- 参数调整:
- 自适应转换概率:动态调整p值以平衡全局与局部搜索,例如基于迭代次数的非线性递减函数。
- 非线性收敛因子:约束缩放因子γ,加速后期收敛。
- 混合策略:
- 与杂草算法结合:通过竞争机制增强种群多样性,提升覆盖率。
- 高斯扰动(EFPA-G) :在局部搜索中引入高斯随机扰动,避免局部最优。
- 模拟退火融合:利用概率突跳策略增强全局搜索能力。
- 精英保留与变异:
- t-分布精英保留:通过精英概率维持种群多样性,结合高斯变异提升局部精度。
2. 多目标优化扩展
针对WSN多目标需求(如覆盖、能耗、成本),提出 非支配排序多目标FPA(NSMOFPA):
- 外部存档策略:保存Pareto最优解集。
- 拥挤度计算:维持解集分布的均匀性,适用于复杂障碍物环境。
四、改进算法的性能比较与实验验证
以下为几种典型改进算法在WSN部署中的性能对比:
算法 | 优化目标 | 优势 | 实验指标(覆盖率/能耗) | 文献来源 |
---|---|---|---|---|
IFPA | 单目标(覆盖率) | 收敛速度快,障碍物适应性强 | 92.5% / 降低15% | |
NSMOFPA | 多目标(覆盖、能耗、溢出率) | Pareto前沿分布均匀 | 89% / 能耗降低20% | |
EFPA-G | 节点定位精度 | 高斯扰动增强局部搜索 | 定位误差<0.5m | |
混合杂草-FPA | 覆盖率与能效比 | 种群多样性高,适应动态环境 | 94% / 能效提升18% | |
HSFPA(模拟退火) | 复杂环境覆盖 | 全局搜索能力突出 | 91% / 收敛迭代减少30% |
实验结论:
- IFPA在静态环境中表现最佳,覆盖率高且部署成本低。
- NSMOFPA适用于多目标优化场景,但计算复杂度较高。
- EFPA-G在节点定位任务中精度显著优于传统方法。
五、未来研究方向
- 动态环境适应性:结合强化学习实现实时部署调整。
- 三维部署优化:扩展算法至复杂地形与曲面覆盖。
- 能耗深度优化:引入能量收集模型(如太阳能)延长网络寿命。
- 异构网络协同:融合边缘计算与FPA实现智能节点调度。
六、总结
改进型FPA通过参数自适应、混合策略及多目标扩展,显著提升了WSN部署的覆盖率、能耗效率和动态适应性。未来需进一步结合新型智能算法与硬件技术,推动WSN在物联网、工业监测等领域的实际应用。
📚2 运行结果
2.1 有障碍物
几种算法比较图:
2.2 无障碍物
部分代码:
%以下数据验证完毕,完全正确
point = zeros(8,2);%存储这些点 从左 从上往下
point(1,:) = [x1_up,50];
point(2,:) = [0,y1_down];
point(3,:) = [0,y2_up];
point(4,:) = [x2_down,0];
point(5,:) = [x3_up,50];
point(6,:) = [50,y3_down];
point(7,:) = [50,y4_up];
point(8,:) = [x4_down,0];
%菱形的计算
point_diamond = zeros(2,4);%菱形的四个点,方位是顺时针 第一列为上 二列为右
%求出新菱形形的四个点
syms x y;%先定义一个变量
%左上角
k5 = 1;
b5 = 10;
%别搞什么计算了 直接可以看出来
point_diamond(1,1) = 25;
point_diamond(2,1) = 35;
%右上角
k6 = -1;
b6 = 60;
point_diamond(1,2) = 35;
point_diamond(2,2) = 25;
%右下角
k7 = 1;
b7 = -10;
point_diamond(1,3) = 25;
point_diamond(2,3) = 15;
%左下角
k8 = 1;
b8 = 40;
point_diamond(1,4) = 15;
point_diamond(2,4) = 25;
load struct_pop_public.mat;%加载该种群
struct_pops = struct_pop_public;%得到种群数据
load struct_first_init_public.mat%加载最开始的一个个体数据
struct_first_init = struct_first_init_public;%得到初始化个体数据
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王振东,谢华茂,胡中栋,李大海,王俊岭.改进花朵授粉算法的无线传感器网络部署优化[J].系统仿真学报,2021,33(03):645-656.DOI:10.16182/j.issn1004731x.joss.19-0580.