大型自监督模型是强大的半监督学习器(论文解读)

这篇论文名为“SimCLR v2”,由Google Brain团队的Ting Chen、Simon Kornbleth、Kevin Swarski、Moammar Naruzzi和Jeffrey Hinton撰写。论文的核心内容是,在半监督学习中,以自监督学习进行预训练,然后进行微调,这种方法比传统的半监督学习方法更有效,类似于自然语言处理模型的做法。SimCLR v2是对SimCLR自监督预训练方法的改进,论文证明了它优于许多基准模型。

论文探讨了两个主要方面:

  1. SimCLR v2方法: 论文介绍了SimCLR v2,它是SimCLR的改进版本,并详细解释了其工作原理。
  2. 模型规模与半监督学习的关系: 论文提出了一种观点,即更大的模型在半监督学习中表现更好,论文试图通过实验和分析来验证这一论点。

论文以图像识别为例,说明了半监督学习的场景。在半监督学习中,数据集的一部分有标签,而大部分数据没有标签。这通常是因为标注数据的成本很高,而未标注的数据则相对容易获得。论文模拟了一种场景,即使用ImageNet数据集,并人为地限制标签数量,以模拟实际中标签预算有限的情况。

论文还将半监督学习与自然语言处理中的半监督学习进行了对比。在自然语言处理中,半监督学习通常使用来自不同分布的数据集,例如用维基百科文本进行预训练,然后再用于情感分类任务。而在图像领域,半监督学习通常使用同一数据集,但只有部分数据有标签。

总体而言,这篇论文为半监督学习提供了一种新的方法,即通过自监督学习进行预训练,然后进行微调,并强调了模型规模在半监督学习中的重要性。论文还对半监督学习的不同场景进行了比较和分析。

本文提出了 SimCLRv2,并表明半监督学习从自监督预训练中获益良多。令人惊讶的是,这种效果在标签越少、模型参数越多时越显著。大纲:0:00 - 简介和概述1:40 - 半监督学习3:50 - 通过自监督进行预训练5:45 - 对比损失10:50 - 保留投影头13:10 - 有监督微调13:45 - 无监督蒸馏和自训练18:45 - 架构回顾22:25 - 实验34:15 - 更广泛的影响论文:https://arxiv.org/abs/2006.10029代码:https://github.com/google-research/simclr
摘要:在利用大量未标记数据的同时,从少量标记示例中学习的一种范式是无监督预训练,然后进行有监督微调。尽管这种范式以与任务无关的方式使用未标记数据,与大多数先前用于计算机视觉的半监督学习方法相比,我们表明它对于 ImageNet 上的半监督学习出奇地有效。我们方法的关键要素是在预训练和微调过程中使用大型(深而宽)网络。我们发现,标签越少,这种方法(对未标记数据的与任务无关的使用)从更大的网络中获益越多。经过微调后,可以通过第二次使用未标记示例来进一步改进大型网络并将其蒸馏成更小的网络,但以与任务相关的特定方式进行,从而在分类精度方面几乎没有损失。所提出的半监督学习算法可以概括为三个步骤:使用 SimCLRv2(SimCLR 的修改版本)对大型 ResNet 模型进行无监督预训练,在少数标记示例上进行有监督微调,以及使用未标记示例进行蒸馏以细化和转移与任务相关的知识。此过程仅使用 1% 的标签(每个类别 ≤13 个标记图像)使用 ResNet-50 实现了 73.9% 的 ImageNet top-1 准确率,与之前的最先进技术相比,标签效率提高了 10 倍。使用 10% 的标签,使用我们的方法训练的 ResNet-50 实现了 77.5% 的 top-1 准确率,优于使用所有标签进行的标准有监督训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YannicKilcher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值