【科研小白系列】从0开始配置服务器环境:Miniconda(超详细)

在这里插入图片描述

0、前言

今天是来到一个全新的实验室单位实习的第五天了,回想起来到实验室的第一天,老师给我在服务器上开了个新用户,这意味着我又需要在服务器终端重新配置所有的环境。借着这个机会,我正好可以继续整理出一个比较完整的适合小白的实验室入门教程了。

同时在这个实习过程中,我也学到了很多东西,比如工具的正确使用、新的终端工具、调试方法等等。也会在这期之后继续更新。

碎碎念,其实在第一天连接服务器的时候,我遇到了很多问题,比如在本地windows下怎么都连不上服务器,最终换成苹果系统居然神奇的好了。这边的科研人员基本上都是用MacOS和命令行进行开发,这对热衷于Windows和Pychram的我来说简直是个巨大的冲击。在这个过程中,感谢一直坚持不放弃的自己,感谢耐心指导我的师姐和徐老师,感恩!

1、Miniconda的安装

Tips, 以下步骤是基于我们已经连接了远程服务器,然后在连接后的终端所做的。

Miniconda和Anaconda类似,都是管理python环境的工具。

1.1 查看服务器的操作系统信息

连接好服务器后在终端运行以下命令

uname -a

在这里插入图片描述

1.2 查看服务器的cuda版本(重要)

执行:

nvcc -V

CUDA(Compute Unified Device Architecture)是 NVIDIA 推出的一种并行计算平台和编程模型,CUDA 软件:由 CUDA 驱动、CUDA 工具包等组成。CUDA 驱动负责管理 GPU 资源和与硬件交互,CUDA 工具包提供了一系列的开发工具,如编译器、调试器、性能分析工具等,还包含了 CUDA 编程语言和相关的库,方便开发者进行 CUDA 程序的开发。
一句话:CUDA是我们使用GPU的中介,要想使用GPU加速我们模型的训练或预测,必须保证安装了CUDA!

如果这个时候出现

在这里插入图片描述.(一般是因为CUDA没有加入到你当前这个新用户的环境变量里面)

解决办法

  1. 查看cuda的bin目录下是否有nvcc:

    cd /usr/local/cuda/bin
    
  2. 如果存在,直接将cuda路径加入系统路径即可:

  • 进入配置文件vim ~/.bashrc(在/.bashrc中配置LD_LIBRARY_PATH路径、配置PATH路径,完整配置如下)

  • 添加以下两行(i进入插入编辑模式)

    export LD_LIBRARY_PATH=/usr/local/cuda/lib
    export PATH=$PATH:/usr/local/cuda/bin
    

    在这里插入图片描述

  • 更新配置文件:

    source ~/.bashrc
    
  • 再次执行nvcc -V 就可以看到相应cuda版本了,如下:
    在这里插入图片描述

以下是详细的步骤来完成编辑 ~/.bashrc 文件并添加指定内容:

  1. 进入配置文件

    • 打开终端,输入命令 vim ~/.bashrc。这会使用 vim 文本编辑器打开 ~/.bashrc 文件。~ 代表当前用户的主目录,.bashrc 是一个隐藏文件,用于存储当前用户的 bash 环境配置信息。
  2. 进入插入模式

    • vim 打开 ~/.bashrc 文件后,你会看到文件内容,此时处于 命令模式。要进行文本编辑,需要进入 插入模式。按 i 键(小写的 i),屏幕左下角会出现 -- INSERT -- 字样,表示你已进入插入模式。
  3. 添加内容

    • 在文件末尾(你可以使用向下箭头键 移动到文件末尾)添加以下两行内容:
      export LD_LIBRARY_PATH=/usr/local/cuda/lib
      export PATH=$PATH:/usr/local/cuda/bin
      
    • 第一行设置了 LD_LIBRARY_PATH 环境变量,指定了 CUDA 库文件的路径。第二行将 CUDA 的 bin 目录添加到系统的 PATH 环境变量中,这样系统就可以找到 nvcc 命令。
  4. 保存并退出

    • 添加完内容后,按 Esc 键退出插入模式,回到命令模式。
    • 在命令模式下,输入 :wq(冒号 : 加上 wq),然后按回车键。:w 表示保存(write),:q 表示退出(quit)。如果文件成功保存并退出,你将回到终端命令行界面。

完成上述步骤后,就完成了 ~/.bashrc 文件的编辑,接下来就可以按照执行 source ~/.bashrc 来更新配置文件,使新添加的环境变量生效。

2、Miniconda的下载

参考官网下载地址:https://docs.anaconda.com/miniconda/
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.1 下载并安装 miniconda3

(本质其实就是运行上面的命令)

# 创建目录 ~/miniconda3 ,如果父目录不存在则一并创建。
# -p 选项表示如果需要的话创建目录及其父目录,以确保目标目录结构存在。
mkdir -p ~/miniconda3 

# 从指定的 URL 下载 Miniconda3 的安装脚本。
# https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh 是下载链接。
# -O 选项将下载的内容保存到指定的文件路径 ~/miniconda3/miniconda.sh 。
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh 

# 以静默模式运行 Miniconda3 的安装脚本。
# -b 选项表示以 batch 模式安装,不会提示用户进行交互操作。
# -u 选项表示在安装过程中不更新已经安装的包。
# -p 选项指定安装路径为 ~/miniconda3 。
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3 

# 删除下载的 Miniconda3 安装脚本。
# -rf 选项中, -r 表示递归删除目录及其内容, -f 表示强制删除,不提示确认。
rm -rf ~/miniconda3/miniconda.sh 

安装完miniconda3后还需要初始化,执行代码:

~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh

如果出现bash: conda: command not found...

vim ~/.bashrc

export PATH=$PATH:/data3/huangfuyao/miniconda3/bin

2.2 创建虚拟环境

执行代码

source ~/.bashrc
conda create --name myenv python=3.10

2.3 在虚拟环境中安装pytorch

pytorch官网:https://pytorch.org/get-started/locally/,选择合适的版本。
在这里插入图片描述
执行代码:

conda activate myenv # 进入虚拟环境
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

至此,安装完毕!!🎉撒花

现在就可以用conda 命令来激活环境、下载包等等操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是瑶瑶子啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值