【电路理论】KCL、KVL、线性直流电路各大方法、定理详解

该文详细介绍了电路中的基本定律KCL和KVL,以及线性直流电路的分析方法,包括电阻网络的等效变换、含源支路的处理,如戴维宁和诺顿电路。此外,还讨论了支路电流法、回路电流法和节点电压法在不同情况下的应用,特别提到了受控源和电流源的影响。最后,概述了电路定理,如置换定理、齐性定理和叠加定理,以及等效电源电路的戴维宁和诺顿定理的应用。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述

一、KCL、KVL定律

1.1:KCL

在这里插入图片描述
在这里插入图片描述
💡注意

  • 分析对象:电路中某一节点
  • 用处:找出电流之间的关系,列方程,求解未知量
  • 注意电流的参考方向
  • 核心:节点相连支路:流入节点电流 = 流出节点电流

1.2:KVL

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.3:总结

在这里插入图片描述

💡注意:对于含n个节点、b个支路的平面电路

  • n-1个独立的KCL方程
  • b-n+1个KVL方程(基本回路数=独立回路数=网孔数=b-(n-1))

二、线性直流电路

在这里插入图片描述

2.1:电阻网络等效变换

在这里插入图片描述
💡注意

  • 这个等效变换的核心在于,端口中间部分的电路全部由电阻组成!即电阻网络,那么其实可以直接等效成1个电阻即可。如果端口中间部分是含源电路,则不能等效成电阻,这个第三部分讲“电路定理”的“等效电源定理”会讲如何进行等效!

在这里插入图片描述

2.1.1:电阻等效——三角&星型变换

在这里插入图片描述

  • 三角和星型的电路可以进行转换,简化电路,方便求解
    在这里插入图片描述
    在这里插入图片描述
  • 记住,三角是星型3倍,前提是三个电阻相等(对称),则有:R△=3RY,也就才可等效(即对外表现相同)。可以这样大致来记忆:三角的三个电阻类似于并联,而星型是串联。(我们知道,若单个电阻相等,则并联之后的总电阻是比串联小),而三角和星型为了等效,三角电路的电阻就是星型的3倍,才能保证对外等效。

2.1.2:总结

在这里插入图片描述

2.2:含源支路的等效变换

在这里插入图片描述

2.2.1:戴维南电路和诺顿电路及其等效转换

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3:支路电流法

在这里插入图片描述

  • b个支路的电流变量,需要b个方程来求解

2.3.1:特殊情况——含受控源

在这里插入图片描述

  • 因为受控源也有电压,所以需要设它的电压,那么就多个变量
  • 所以就要把控制量(也就是多出来的那个变量)找出与支路电流的关系,就是再多列个方程,那么就可以求解

2.3.2:特殊情况——含电流源

  • 如果含电流源,那么相当于少了一个支路变量(可以少列一个方程),但是由于列KVL的时候,电流源两端的电压也要表示,需要设电流源的电压(多一个方程)。如此一多一少,其实变量和方程的数目是不变的!
    在这里插入图片描述
  • 或者在选取回路来列KVL的时候,直接避开电流源所在回路。同时KVL可以少列一个(因为含电流源,相当于少了一个支路变量)
    在这里插入图片描述

2.3.3:总结

在这里插入图片描述

2.4:回路电流法

在这里插入图片描述
在这里插入图片描述
💡注意

  • 我们知道,对于n个 节点,b个支路,有b-n+1独立回路。所以用回路电流法,需要设b-n+1(也是网孔数)个假象的回路电流,也就需要b-n+1个方程
    在这里插入图片描述
    在这里插入图片描述

  • 根据原理可以看出,回路电流法的本质就是列KVL!!

2.4.1:特殊情况——含受控源

  • 含受控源,那就会多相应的控制变量,需要加方程
    在这里插入图片描述

2.4.2:特殊情况——含电流源

  • 把电流源两端电压设出来,再增补方程(因为多了个变量)
    在这里插入图片描述

  • 第二种处理方法,由于电流源的存在,如果选取该电流源所在回路,且只选取一次。则该回路的回路电流直接得知。少列一个方程(其实也没有少列)
    在这里插入图片描述

2.5:节点电压法

在这里插入图片描述

  • 原理&本质就是就是KVL!(出=入)
    在这里插入图片描述在这里插入图片描述

在这里插入图片描述

2.5.1:特殊情况——含纯电压源支路

  • 即该分析的节点的所连支路只有一个电压源,没有任何电阻。
  • 解决方法:
    • 方法1:增设该纯电压源支路的电流变量,同时,需要增补该电压源和节点电压的关系方程
    • 方法2:适当选取参考节点,时该源节点为某节点电压,少列方程

2.5.2:特殊情况——含受控源源支路

  • 其实特殊就特殊在受控量是个未知量,所以处理的核心在于:增补方程。先当独立源处理,再将控制量用节点电压表示。

2.5.3:特殊情况——含电流源串联元件支路

  • 先等效:对于该支路外面来看,可以直接把这个支路等效成电流源
  • 再列节点电压方程

2.5.4:特殊情况——多个电阻串联

  • 先求总电阻,再列方程

2.5.5:总结

在这里插入图片描述

三、电路定理

在这里插入图片描述

3.1:置换定理

在这里插入图片描述

在这里插入图片描述

3.2:齐性定理

在这里插入图片描述
在这里插入图片描述

3.3:叠加定理

在这里插入图片描述

  • 当我们另某个独立源单独作用时,其他不作用的独立源要置0
    • 电压源置0:相当于短路
    • 电流源置0:相当于断路
      在这里插入图片描述
      在这里插入图片描述

3.4:等效电源电路

在这里插入图片描述

3.4.1:戴维南定理

在这里插入图片描述
在这里插入图片描述

3.4.2:诺顿定理

在这里插入图片描述

3.4.3:说明/总结

在这里插入图片描述

  • 当含受控源,求等效电阻,一般用外加电源,这个时候只需要找出Us和Is关系即可,不一定要求具体值(也求不出来,因为外加电源的这个电源电压其实是随机的)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是瑶瑶子啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值