A Survey of Deep Causal Model 《深度因果模型》综述

本文来自北京交通大学最新《深度因果模型》综述论文
Li Z, Zhu Z. A Survey of Deep Causal Model[J]. arXiv preprint arXiv:2209.08860, 2022.

ABSTRACT

​ 因果关系的概念在人类认知中占有重要地位。在过去的几十年里,因果推理在许多领域都得到了很好的发展,如计算机科学、医学、经济学和教育。随着深度学习技术的进步,它已越来越多地用于反事实数据的因果推理。深度因果模型通常将协变量的特征映射到一个表示空间,然后基于不同的优化方法设计各种目标优化函数来无偏估计反事实数据。本文对深度因果模型进行了综述,其核心贡献如下:1)提供了多种方案和连续性因果下的相关指标;2)从时间发展和方法分类的角度对深度因果模型进行了全面的概述;3)辅助对相关数据集和源代码进行详细而全面的分类和分析。

1 Introduction

​ 一般来说,因果关系是指结果和原因之间的联系。这种现象的原因和影响是很难定义的,我们往往只能直观地意识到它们[1]。因果推理是根据影响发生的周围环境得出因果联系结论的过程,在现实世界的场景中有着广泛的应用。例如,估计广告中观察数据的因果效应[3,4,5,6,7,8,9],开发与因果治疗效果估计[10,11,12,13,14,15,16]高度相关的推荐系统,学习医学中患者的最佳治疗规则[17,18,19],强化学习[20,21,22,23,24,25,26,27,28]中的ITE估计,自然语言处理中的因果推理任务[29,30,31,32,33,34],新兴的计算机视觉和语言交互任务[35,36,37,38,39],教育[40],政策决策[41,42,43,44,45]和改进的机器学习方法[46]等。

​ 深度学习在应用于大数据时有助于人工智能的发展[47,48,49,50]。与传统机器学习算法相比,深度学习模型计算效率更高、精度更高,在各个领域都保持了良好的性能。然而,许多深度学习模型是可解释性较差的黑盒,因为它们更感兴趣的是作为输入和输出的相关性,而不是因果关系[51,52,53]。近年来,深度学习模型被广泛用于挖掘数据的因果关系而不是相关性[41,43]。因此,深度因果模型已经成为基于无偏估计估计治疗效果的核心方法[19,44,45,54]。目前,因果推理领域的许多工作利用深度因果模型来选择合理的治疗方案[55,56,57,58]。

​ 在大数据环境下,所有的趋势变量都是[59]相关的,因此发现因果关系是一个具有挑战性的问题[60,61,62]。在统计学理论中,进行随机对照试验(randomized controlled trials, RCT)[63]是推断因果关系最有效的方法。换句话说,样本被随机分配到处理组或对照组。尽管如此,真实世界的RCT数据是稀疏的,并且有几个严重的缺陷。涉及RCT的研究需要大量特征变化不大的样本,难以解释,涉及伦理挑战。事实上,选择受试者去尝试药物或疫苗是不明智的[64,65]。因此,因果关系通常直接使用观察数据进行测量。获得反事实结果的一个核心问题是如何处理观测数据[66]。在对观察数据进行分析时,处理不是随机分配的,处理后的样本表现与普通样本表现有显著差异[41,43]。不幸的是,我们无法在理论上观察到其他结果,因为我们无法观察到反事实结果[67]。

​ 主流研究的一个长期特征是使用潜在结果框架作为解决观察数据因果推断问题的手段[68]。潜在结果框架也被称为Rubin因果模型[69]。因果推理与深度学习密切相关,因为它是使用Rubin因果模型来概念化的。为了提高估计的准确性和无偏性,一些研究人员尝试将深度网络和因果模型结合起来。为了说明,考虑分布平衡方法的表示[41,43,44],协变量混淆学习方法的影响[54,70,71],基于生成对抗网络的方法[45,72,73]等等[58,34,74]。由于深度学习方法有利于因果推理,因此因果推理也有助于深度学习方法的发展。除了提高因果效应估计的准确性外,深度网络的研究为开发深度学习算法提供了一个合理的基础[75,76]。

​ 近年来,关于因果推理的各种观点被讨论[77,1,78,79,80,81,82,83,2]。表1列出了相关综述的标题和要点。文献[77]深入分析了因果推理的起源和变量发展,以及因果学习对因果推理发展的影响。此外,调查[1]对传统和前沿的因果学习方法进行了概述,并对机器学习和因果学习进行了比较。许多学者讨论了如何解读机器学习。随后,为了创建可解释的人工智能算法,survey[79]结合了因果推理和机器学习。作为一个新的视角,因果表示学习正在蓬勃发展,综述[80]使用它从低级观察中发现高级因果变量,加强了机器学习和因果推理之间的联系。由于近年来因果机器学习的流行,文献[78]详细讨论了图形因果推理与机器学习的相关性。此外,在调查[81]中,作者研究了机器学习的最新进展如何应用于因果推理,并对因果机器学习如何促进医学进步进行了全面的解释。文献[82]认为,基于深度学习可以改进和梳理因果发现方法,探索可变范式有助于思考和探索因果发现方法。推荐系统中的因果推理是调查的重点[83],它解释了如何使用因果推理来提取因果关系,以增强推荐系统。长期以来,它一直是统计学的潜在结果框架,将因果推理与深度学习联系起来。作为起点,调查[2]检查并比较了满足这些假设的不同类别的传统统计算法和机器学习算法。由于深度学习算法的快速发展,现有文献在检验泛化性时没有考虑深度因果模型。因此,从深度网络的角度出发,从时间和分类两个方面对深度因果模型进行了总结。对近年来深度因果模型进行了全面的回顾和分析。它有三个核心贡献:1)在多重治疗和连续剂量治疗的情况下纳入了相关指标。2)从方法分类和时间发展两个角度对深度因果模型进行了全面的综述。3)在相关数据集和源代码的分析和分类方面提供了详细和全面的支持。

survey titlecore content
因果推理的发展[77]因果推理的起源与发展
因果推理的起源和发展因果推理[79]机器学习反事实因果推理的可解释性
机器学习反事实因果推理的可解释性机器学习的因果关系[78]图形因果推理与机器学习的联系
图形因果推理与机器学习的连接面向因果表示学习[80]通过因果表示学习探索数据中的因果变量
通过因果表示学习探索数据中的因果变量医疗保健和精准医疗的因果学习[81]医疗保健中的因果机器学习
医疗保健中的因果学习一项调查用数据学习因果关系:问题和方法[1]大数据环境下因果学习与机器学习的关系
大数据环境下因果学习与机器学习的关系因果推理综述[2]潜在结果框架中观察性数据的因果效应估计
潜在结果框架中观察数据的因果效应估计不同变量范式下的深度学习因果发现综述与路线图[82]深度学习和可变范式视角在因果发现中的应用
深度学习和变量范式视角在因果发现中的应用推荐系统因果推理:综述与未来方向[83]通过因果推理提取因果关系,优化推荐系统
深度因果模型综述深度网络发展视角下的深度因果推理模型

​ 以下是论文其余部分的大纲。如第2节所述,介绍了深度因果模型,以及定义和假设。在第3节中,介绍了适当的例子和指标,包括二元处理、多重处理和连续处理。 第4节演示了一个深度因果模型,其中包括对它的概述和分析。在第5节中,讨论了深度因果模型的方法,包括分布平衡方法、协变量混淆学习方法、基于生成对抗网络的方法、基于文本输入的时间序列的方法以及基于多变量和连续变量模型的方法。第6节列出了相关的实验指南。论文的总结在第7节。

2 Preliminaries

​ 本节介绍深度因果模型的基础知识,包括任务描述、数学概念、相关假设、示例和度量。

​ 基本上,因果效应估计的目的是估计采用不同处理方法后结果的变化。假设有几个治疗方案A、B、C等,它们都具有不同的治愈率,治愈率的变化是治疗方案的结果。现实地说,我们不能同时对同一组患者采用不同的治疗方案。与随机对照试验相反,观察性研究需要解决的主要问题是缺乏反事实数据。它是指如何根据过去的实验诊断和患者的病史找到最有效的治疗方案。

​ 由于医疗保健[84,85,86]、社会学[87,88,89,90]、数字营销[91,92,93]和机器学习[94,95,96,97,98]等领域的数据的广泛积累,观察研究变得越来越重要。研究人员越来越多地使用深度学习网络根据观察数据进行反事实估计,而深度因果模型可以帮助各个领域做出最佳治疗决策。

2.1 Definitions

​ 这里阐述了潜在结果框架[69]下的基本符号定义。根据该框架,因果关系被定义为应用于样本的处理方案的结果,它可以是特定的行为、特定的方法或某种特定的处理方案。以下是与因果效应估计相关的概念,以调查[2]中的相关基本定义为基准。

(包括:Sample ,Treatment ,Observed outcome ,Counterfactual outcome ,Dose ,Dose-response curve ,Covariates )

2.2 Assumptions

​ 在了解了因果模型的基本定义之后,要实现对因果治疗效果的估计,通常需要以下三个假设,这些基本假设来源于文献[2,101]。

(包括:Stable Sample Treatment Value (SSTV) ,Ignorability ,Overlap )

3 Examples and Metrics

​ 深度因果模型利用不同的指标来解决不同的实际问题。对不同场景应用所采用的不同性能指标进行了分析和描述。就像在医学、医疗保健、市场、求职、社会经济和广告中涉及到二元治疗问题、多重治疗问题和连续剂量治疗问题。本节只讨论经典的例子。要查看详细的数据集描述,请参阅第6节。除了[2]调查的基线测量,我们还增加了多重方案和连续变量的测量。

3.1 Binary treatment

3.2 Multiple treatment

3.3 Continuous dose treatment

4 Development

​ 通过对背景和基本定义的深入理解,本节将进入深度因果模型的核心。综述了深度因果模型及其在过去6年的发展,包括基于时间轴的41个深度因果模型的分析。

4.1 Overview

​ 近年来,深度因果模型的研究变得越来越流行。随着深度学习的发展,各种深度因果模型在估计因果效应方面变得更加准确和高效。根据图1,列出了从2016年6月到2022年2月的约40个经典深度因果模型,包括它们的详细名称和提出时间。

在这里插入图片描述

​ 深度因果模型自2016年以来一直在开发。Johansson等人首次发布了用于反事实推理的学习表示[41],并提出了将深度学习与因果效应估计问题相结合的算法框架BNN和BLR[41],将因果推理问题转化为领域适应问题。从那时起,许多模型被提出,包括DCN-PD[110], TARNet和CFRNet[43]。对此,值得注意的是,Louizos等人在2017年12月提出的基于深度网络经典结构参数自编码器VAE的CEVAE[54]模型重点关注混杂因子及其对因果效应估计的影响。

2018年以及2019年,人们对因果表示学习的兴趣越来越大。一开始,联合提出了Deep-Treat[19]和RCFR[111]模型。GANITE[45]模型推出后,使用生成式对抗模型[112]架构进行反事实估计成为因果推理领域的主流。根据前期工作,对CFR-ISW[113]、CEGAN[72]、[44]站点进行优化。2018年12月实现的R-MSN[74]模型使用循环神经网络[114]解决多治疗时间序列的连续剂量问题,打开了深度因果模型。为解决这一问题,2019年5月提出PM[42]和TECE[104],用于与多种离散处理相关的因果效应估计。作为后续,CTAM[34]开始专注于估计文本数据的因果效应;Dragonnet[71]首次将正则化和倾向评分网络引入因果模型;ACE[55]试图从表示空间中提取细粒度的相似性信息。对于RSB[115] 2019年12月版本,使用深度表示学习网络和PCC[116]正则化来分解协变量,使用辅助变量来控制选择偏差,并使用混淆因子和调节因子进行预测。

​ 深度因果模型在2020年蓬勃发展。首先,DKLITE[56]模型融合深度核模型和后验方差正则化;然后,DR-CFR[117]应用三个表示网络、两个回归网络和一个预测网络来解耦协变量的选择偏差;GAD[118]接着关注连续剂量治疗的因果效应;DRGAN[119]定义了一种用于拟合样本剂量效应曲线的创新生成对抗网络;CRN[120]通过结合反事实循环神经网络来估计时变的处理效果。TSD[121]在估计了多原因混淆下的时间序列因果效应后,转向了时间序列因果效应的估计。在潜表示空间中,ABCEI[122]使用GAN平衡治疗组和对照组的协变量分布。在前人研究的基础上,BWCFR[123]、LaCIM[124]进一步优化了结构思想。此外,SCIGAN[73]、DRNet[57]在2020年将连续剂量扩展到任何数量的治疗问题,VSR[125]以重加权的方式聚合深度神经网络潜变量。

​ 从2021年到2022年,因果模型变得更加创新、开放和灵活。采用VCNet[58]模型,实现了连续平均剂量响应曲线的估计。截至2021年5月,NCoRE[126]使用交叉治疗交互建模来了解产生多种治疗组合的潜在因果过程。之后,CETransformer[127]使用Transformer[128]来表征协变量,注意力机制专注于协变量之间的相关性。之后,DONUT[129]和DeR-CFR[70]在之前工作的基础上进行优化。SCI[75]将子空间理论用于因果表示学习,拓宽了研究者的思路。FlexTENet[130]提出了一种多任务自适应学习架构。

​ 此外,SCP[131]采用两步程序估计多因素治疗效果。为了构建这种合成孪生匹配表示,SyncTwin[132]利用了结果中的时间结构。最后,TransTEE[76]将表示分布平衡方法扩展到连续、结构化和剂量依赖性治疗,使其作为因果效应估计问题更具开放性。

​ 下一节分析了同一类别的所有模型,并基于深度学习结构的使用和模型使用的共同思想进行了比较。

4.2 Classification

​ 前一小节对过去六年的深度因果模型进行了简要概述。根据方法的类型,本小节评估相关的深层因果模型。目前有五类深度因果模型。以发布时间为主线,简要介绍了各种算法的优点。图2显示了每个模型的详细分类。

在这里插入图片描述
在2016年的方法模型中提出了表示分布平衡。长期以来,研究者研究的温床就是这种方法。BNN[41]项目于2016年6月开放,通过将因果推理与邻域适应联系起来,为此类方法奠定了基础。之后,DCN-PD[110]引入了一个深度多任务神经网络,可以进行反事实推理。截至2017年8月,CFRNet[43]添加了距离积分概率度量和基于BNN的不平衡惩罚。为了学习最优治疗策略,Deep-Treat[19]使用一个无偏自编码器网络。然后,RCFR[111]和CFR-ISW[113]采用重新加权的策略来平衡空间表示。从2018年12月开始,[44]站点保留了代表空间处理组和对照组的局部相似性和数据平衡分布。从2019年11月开始,ACE[55]开始关注特征空间中的细粒度相似性信息。其次,DKLite[56]学习表示空间域重叠信息。到2020年10月,BWCFR[123]在空间上重新加权域重叠表示。最后,SCI[75]于2021年11月整合了子空间的概念,创建了多空间信息补充。

​ 协变量混淆学习在2017年12月由CEVAE[54]首次提出并应用。CEVAE的一个目标是基于VAE挖掘潜在混杂因素的关联,并评估它们对因果效果的影响。作为其非参数估计理论的一部分,Dragonnet[71]在2019年10月纳入了正则化目标函数和倾向得分预测网络。接下来,RSB[115]应用自编码器和PCC正则化进行协变量分解。随着2020年4月协变量解耦的实现,DR-CFR[117]实现了三个表示网络、两个回归网络和两个预测网络。之后,LaCIM[124]提出了两种不同版本的潜在因果模型。完成后,VSR[125]使用重加权方法来隔离混杂的个体。到2021年10月优化De-CFR算法是DeR-CFR的一个重大成功[70]。在同一时期,DONUT[129]用深度正交网络估计平均处理效果。此外,FlexTENet[130]提出了一种跨多个任务学习共享信息的方法,该方法可以自适应地确定结果。

​ 2018年4月,GANITE[45]首次将生成式对抗网络应用于反事实的估计。随后,CEGAN[72]通过将表示分布平衡与生成对抗模型相结合,使用生成对抗网络来描述空间分布。到2020年10月,ABCEI[122]通过使用GAN网络平衡潜在表示空间协变量分布。此外,CETransformer[127]在2021年7月将注意力机制与GAN网络相结合,以学习平衡的协变量表示。

​ 截至2018年12月,R-MSN[74]模型专注于时间序列下的反事实循环网络。此外,文本序列受CTAM[34]于2019年8月提出的基于条件的治疗-对抗学习匹配模型的影响。为了估计长期治疗效果,CRN[120]在2020年4月将GANs与反事实循环神经网络相结合。之后,TSD[121]构建了基于多任务的输出RNN因子模型。最后但并非最不重要的是,SyncTwin[132]构建了一个合成的孪生样本结构,可以对目标患者进行反事实分析。

​ 2019年5月,PM[42]利用匹配思想尝试解决离散多离散处理问题。同时,TECE-VAE[104]采用变分自编码器将任务嵌入模型扩展到多处理情况的任意子集。到2020年4月,GAD[118]结合了生成对抗反发现算法来解决连续治疗问题,去除协变量和治疗变量之间的关联。为了为每个样本创建完整的剂量效应曲线,DRGAN[119]利用了生成器、鉴别器和预测网络的结构。随着2020年12月分层判别器的添加,SCIGAN[73]完成了其原始基础。此外,DRNet[57]允许绘制连续剂量参数下任意数量处理的个体剂量-响应曲线。2021年4月,VCNet[58]提出头部结构的连续预测,强调治疗的连续性。随后,NCoRE[126]对交叉治疗交互进行建模,以确定驱动多种治疗组合的潜在因果生成过程。SCP[131]采用两步方法在2021年12月估计多因果治疗效果。最新的模型TransTEE[76]纳入了一种注意力机制,在GAN网络上学习平衡的协变量表示,目的是处理离散的连续或与剂量相关的处理问题。

​ 随着不同应用场景的出现,深度因果模型根据不同的策略和方法使用不同的迭代。请访问下一节以获得每个深度因果模型的详细描述和介绍。

5 Methods

​ 随着医疗保健、教育、经济等领域的数据积累越来越多,深度学习方法越来越多地用于从反事实数据中推断因果关系。现有的深度因果模型通常将协变量映射到表示空间,与之相反,可以使用目标优化函数实现反事实数据的无偏估计。目前的深度因果模型主要使用这5种优化方法:1)分布平衡表示方法;2)协变量混淆学习方法;3)基于生成对抗网络的方法;4)时间序列因果估计问题;5)基于多重治疗和连续剂量模型的方法。本节详细讨论了当前常用的基于深度学习的因果效应估计方法,以及这些方法面临的问题和挑战。

5.1 Representation of distribution balance methods 分配平衡方法的表示法

5.2 Covariates confounding learning methods 协变量混杂学习方法

5.3 Methods based on Generative Adversarial Networks 基于生成对抗网络法

5.4 Time series causal estimation problem 时间序列因果估计问题

5.5 Methods based on multi-treatment and continuous-dose model 基于多处理和连续变量模型方法

6 Guideline For Experiment

6.1 Datasets

6.2 Codes

7 Conclusions

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值